20.02.2025, 10:15
– Raum 0.12 in Haus 9
Forschungsseminar Differentialgeometrie
Kähler and quaternion-Kähler manifolds of non-negative curvature
Uwe Semmelmann (Stuttgart)
Medet Nursultanov
We investigate an asymptotic of the eigenvalues of the of the indefinite-weighted Laplace equation, $\Delta u = \lambda P u$, on the Riemannian manifold equipped with a rough metric. Namely, for the different boundary conditions, we prove the Weyl’s law for both negative and positive eigenvalues.