06.11.2024, 14:00 - 16:00
– Campus Golm, Building 9, Room 2.22 and via Zoom
Institutskolloquium
Graphon Models for Inhomogeneous Random Graphs
Olga Klopp (Paris), Nicolas Verzelen (Montpellier)
Viktoria Rothe
We will consider the Yamabe Problem on globally hyperbolic spatially compact Lorentzian manifolds (M,g) of dimension 4: Given a Lorentzian metric g on M, find a metric conformal to g with constant scalar curvature. This is equivalent to finding a smooth global solution to a certain semilinear wave equation. In the case of a standard static spacetime, it is well known that for a given negative constant scalar curvature there does not exist a smooth global solution if f.e. the scalar curvature of (M,g) is positive. We want to prove that in this case there still exists a global H^2-solution of this semilinear equation.