10.01.2025, 11:00
– Campus Golm, Building 9, Room 2.22 and via Zoom
Arbeitsgruppenseminar Analysis
Exploring quantum fields on rotating black holes
Christiane Klein (York University, UK)
Jianchao Wu (Fudan University)
Finite nuclear dimension is a regularity property of C*-algebras that have played a pivotal role in the Elliott classification program of C*-algebras. It has been a key problem in the field to verify this property for crossed product C*-algebras associated to topological and C*-dynamical systems. Previous results have mainly focused on the case of free actions. In a recent preprint (joint with Hirshberg), we show that any topological action by a finitely generated virtually nilpotent group on a finite-dimensional space gives rise to a crossed product with finite nuclear dimension. This is shown by introducing a new topological-dynamical dimension concept called the long thin covering dimension. This result can be strengthened further and applied to some allosteric (and thus non-almost-finite) actions by certain wreath product groups. Another application yields the result (joint with Eckhardt) that (twisted) group C*-algebras of virtually polycyclic groups have finite nuclear dimension.
This is an online talk. Please contact Sven Raum to receive login data.21