06.11.2024, 14:00 - 16:00
– Campus Golm, Building 9, Room 2.22 and via Zoom
Institutskolloquium
Graphon Models for Inhomogeneous Random Graphs
Olga Klopp (Paris), Nicolas Verzelen (Montpellier)
Alberto Bonicelli (Pavia, Italy)
The importance of the sine-Gordon model in 1+1 spacetime dimensions resides in the integrability of the field theory that it describes. A recent result showed how, within the setting of algebraic quantum field theory, this property translates into a convergence result for both the formal series associated to the S-matrix and to the interacting field of the quantum field theory.
After introducing an algebraic approach to the perturbative study of singular stochastic PDEs, I will show how an adaptation of the aforementioned convergence results yields convergence of the momenta of the solution to a stochastic version of the sine-Gordon equation. Interestingly enough, our two-step procedure passes through the quantum theory and recollects the stochastic information via the classical limit.