23.04.2025, 14:00 - 15:00
– Campus Golm, Building 10, Room 2.10.0.25
Informationsveranstaltung
Zentrale Arbeitsschutzunterweisung / Work safety instructions
Frau Zilm (Bereich Sicherheitswesen)
Alessandra Occelli (Angers)
In this talk I will discuss polynuclear growth model with different symmetries and boundary conditions. I will highlight their connections to problems in combinatorics (Ulam's problem), in analysis (Painlevé II equation), in mathematical physics (KPZ growth models) and in random matrix theory. I will sketch the strategy to study the model in the half space setting with two external sources, strategy which relies on algebraic and orthogonal polynomials identities, and Riemann--Hilbert techniques, and which led to a limit distribution formulated in terms of the solution to Painlevé II equation. This result proves a conjecture by Barraquand--Krajenbrink--Le Doussal '22 on the distribution of the stationary KPZ equation on the half line. Based on joint work with M. Cafasso, D. Ofner, H. Walsh.