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ABSTRACT. This paper studies the Gevrey regularity of weak solutions of a class of linear
and semilinear Fokker-Planck equations.

1. INTRODUCTION

Much attention has been paid to the study of the spatially homogeneous Boltzmann equa-
tion without the angular cut-offs in recent years (see [2, 3, 8, 22] and references therein).
These studies demonstrate that the singularity of the collision cross-section improves the
regularity on weak solutions for the Cauchy problem. For instance, one can obtain, from
these studies, the C'*° regularity of weak solutions for the spatially homogeneous Boltzmann
operator when there are no angular cut-offs. In the local setting, the Gevrey regularity has
been first proved in [21] for the initial data that has the same Gevrey regularity. A more
general result on the Gevrey regularity is obtained in [17] for the spatially homogeneous lin-
ear Boltzmann equation with any initial Cauchy data. Hence, one sees a similar smoothness
effect for the homogeneous Boltzmann equations as in the case of the heat equation.

The consideration for the inhomogeneous equation seems to be a relatively open field.
There is no general result in this study yet. A recent work in [1] investigated a kinetic
equation with the diffusion coefficient as a nonlinear function of the velocity variable. In [1],
making us of the uncertainty principle and microlocal analysis, a C'™° regularity result was
obtained when there is no angular cut-off in the linear spatially inhomogeneous Boltzmann
equation.

In this paper, we study the Gevrey regularity of the weak solutions for the following
Fokker-Planck operator in R27*!

(1.1) L=0+v- 0; —a(t,x,v)\y,
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where A, is the Laplace operator in the velocity variables v and a(t, z, v) is a strictly positive
function in R?"*1

The motivation of studying such an equation is dependent on the study of inhomogenous
Boltzmann equation without angular cutoffs, Landau equation (see [15]) and a non-linear
Vlasov-Fokker-Planck equation (see [11, 12]).

To state our main results, we first recall the definition of Gevrey class functions. Let U
be an open subset of RY and f be a real function defined in U. We say f € G*(U)(s > 1) if
f € C*®(U) and for any compact subset K of U, there exists a constant C' = Cx, depending
only on K, such that for all multi-indices a € NV and for all z € K

(1.2) 0% ()] < O (a1,

Denote by U the closure of U in RN, we say f € G*(U) if f € G*(W) for some open
neighborhood W of U. The estimate (1.2) for z € K is equivalent to the following L2-estimate
(See, for instance, Chen-Rodino[5, 6] or Rodino[18]):

10° Il 2y < CIETH ()1,

In what follows, we shall use the definition based on the above L? estimate for the Gevrey
functions.

We say that an operator P is G*-hypoelliptic in U if for any v € D’ and Pu € G*(U) it
then holds that u € G*(U). Likewise, we say an operator P is C° hypoelliptic in U if for any
u € D' and Pu € C*°(U) it then holds that u € C*(U).

When the operator £ satisfies the well-known Hormander condition, then a famous re-
sult of Hérmander [13] says that £ is C° hypoelliptic. In the aspect of the Gevrey class,
Derridj-Zuily [7] studied the G*-hypoellipticity for the second order degenerate operators of
Hormander type, and proved that £ is G*-hypoelliptic when s > 6.

In this paper, we first improve the result in [7] for the Fokker-Planck operator (1.1). In
fact, similar to the result of [19], we have obtained the following optimal estimate for Gevrey
index s > 3:

Theorem 1.1. For any s > 3, if the positive coefficient a(t,z,v) is in G5(R?*"*1), then the
operator L given in (1.1) is G*-hypoelliptic in R?*"+1,

Remark: A. Our proof of Theorem 1.1 actually shows that the result in Theorem 1.1 holds
even for the following more general operators:

n

L= O + A(v) - 0z — Z ajk(t>$7v)agjvk’
k=1

defined over a domain U in R?"*!. Here, A is a non-singular n x n constant matrix,
(ajk(t, z, U)) is a positive definite matrix over U with all entries being in the G*(U)-class.

B. Our result in Theorem 1.1 is of the local nature. Namely, if there exists a weak solution
in D/, then this solution is in the Gevrey class in the interior of the domain. Hence, interior
regularity of a weak solution does not depend much on the regularity of the initial Cauchy
date.
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Our second result is concerned with the Gevrey regularity of a non-linear version of (1.1).
We consider the following semi-linear equation:

(1.3) Lu=0w+v-Vyu—al(t,z,v)Nyu= F(t,z,v,u, Vyu),

where F(t,z,v,w,p) is a non-linear function of real variables (¢,z,v,w,p). We prove the
following:

Theorem 1.2. Let u be a weak solution of the equation (1.3). Assume that u € L2 (R?"1)
and Vyu € L (R?"+1). Then

loc

= Gs (R2n+1)

for any s > 3, if the positive coefficient a(t,z,v) € G*(R®***1) and the nonlinear function
F(t,z,v,w,p) € GS(R*+2+n),

Remark: C. If the non-linear term F(t,z,v,w,p) is independent of p or F' is of the form:
VoG(t,z,v,u), then it is enough to suppose in Theorem 1.2 that the weak solution u €
L%C(Rszrl).

The paper is organized as follows : In Section 2, we obtain a sharp subelliptic estimate
for the Fokker-Planck operator £ via a direct computation. We then prove the Gevrey
hypoellipticity of £. In Section 3, we prove the Gevrey regularity for the weak solution of
the semi-linear Fokker-Planck equation (1.3).

2. SUBELLIPTIC ESTIMATES

As usual, we write || - ||, & € R, for the classical Sobolev norm in H*(R***1) and (h, k)
for the inner product of h, k € L2(R*"*1). For f, g € C$°(R*"*1), by the Hélder and Young
inequality, we have that for any € > 0,

2.1 < 1hllcllgll—x < + .

We also recall the following interpolation inequality in the Sobolev space: For any ¢ > 0 and
r1 < r9 < rs, it holds that

(2.2) 1y < ellhllry + e~ 27D/ Ta=r2) R,

Let © be an open subset of R?"*1. We denote by S™ = S™(Q),m € R, the symbol
space of the classical pseudo-differential operators and P = P(t,z,v, Dy, D, D,)) € Op(S™)
a pseudo-differential operator of symbol p(t,z,v;7,&,n) € S™. If P € Op(S™), then P is a
continuous operator from HZ(Q) to H5 ™(Q). Here H7(Q) is the subspace of H*(R*"!)
consisting of the distributions having their compact support in €2, and H;} ™ (f2) consists of
the distributions h such that ¢ph € H* ™ (R?*"*1) for any ¢ € C§°(£2). For more properties
concerning the pseudo-differential operators, we refer the reader to the book [20]. Observe

that if Py € Op(S™), Py € Op(S™), then [Py, Py] € Op(S™+me=1).

We next prove a sharp sub-elliptic estimate for the operator £. Our proof is based on the
work of Bouchut [4] and Morimoto-Xu [15].
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Proposition 2.1. Let K be a compact subset of R*™*1. Then for any r > 0, there exists a
constant Ck ., depending only on K and r, such that for any f € C5°(K),

(2.3) 11l < Crer{ [1£F =273+ £ 10 }-

For brevity, we will write, in this section, C'x for a constant that may be different in
a different context. We proceed with the following three lemmas, which establishes the
regularity result in the variables v, x and t, respectively.

Lemma 2.2. For any r > 0, there exists a constant Ck, such that for any f € C§°(K),
IVofllr < Crr(ILf [l + [1f1l)-

Lemma 2.1 indicates the regularity gain of order 1 in the variable v. It can be obtained
directly by the positivity of the coefficient a and the compact supported property of f. For
the space variable x, we have the following sub-elliptic estimate:

Lemma 2.3. There exists a constant Ci such that for any f € C§°(K),
1D Fllo < Cx(1££llo + 11 £llo)
where D2/* = (—A)Y3.
This result is due to [4]. It follows from the estimates:
102 fllo < Cc 1801l * 100 + v - 0 £,

and
[Aufllo < Cr(CIILf o+ [1fllo)-

For the time variable ¢, we have the regularity result of order 2/3, namely, we have the
following:

Lemma 2.4. There exists a constant Ci such that for any f € C§°(K),
10cf <173 < Cr (1L llo + [1.f1l0)-
In fact, we have
10:F <175 = IA" 20 fllo < [IA72(@ + v+ 0a) Fllo + A0 02 flo,

where A = (1 + |D¢|> 4 | Dy |? 4 | Dy|?)Y/2. From Lemma 2.3, we have

1A 0, fllo < CrlIDY*fllo < Cre(I£f1lo + [ f1l0)-
Th[e e]stimate for the term [|[A=Y/3(89;, + v - 9,)f||o can be obtained by a direct computation as
in [15].

Proof of Proposition 2.1. By Lemma 2.2, Lemma 2.3 and Lemma 2.4, we have

(2.4) [fll2/s < Cr{NLflo =+ [Ifllo }-

Moreover, choose a function 1 € C§°(R?" 1) with | = 1 and supp 9 being contained in a
neighborhood of K. Then, for any f € C§°(K) and r > 0, we have

e = 1l < Cr{ AT fllays + A7/, 4] fllays }-
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By virtue of (2.4) and the interpolation inequality (2.2), we have

I1£llr < Cr{ 1LYA™ 2 fllo+ 1 fllr—2y3 }
< Cex{ 1CA™* P fllo + 1 fllo } + el £
Letting € sufficiently small, we get

11 < CrA LS —ass + 11 Fllo + 11, HA™2)£lo }.

Next, a direct calculation yields
L, oA = [0 v Oay AT =Y { o, wATHRO)
j=1

+alOyy, [0y, A3 ] + 20y, wATH0,, }.

From Lemma 2.2, it thus follows that

1L, AP flo < Crf{ 1fllr—zsz + > 110, Fllr—z/3 }

j=1
< Cr{ ML lr—2s3 + I1fllr-2/3 }-

From the estimates above, we deduce that

[fllr < CrA ML =273 + 1 Fllo + [ fllr—2/3 }-

Applying the interpolation inequality (2.2) again and making ¢ small enough, we see the
proof of Proposition 2.1.

We next consider the commuting property of £ with differential operators and cut-off
functions.

Proposition 2.5. Let K be a compact subset of R*"t1. Then for any r > 0, there are
constants Ck r, Cr o such that for any f € C°(K), we have

I, DIfll: < Ck { [ILfllr41-2/3+ Ifllo },
and

1L, elfllr < Crappd 1L =175 + 1 fllo }-
Here ¢ € C3°(R®*™ ™YY and D is one of the differential operators: O, O, or .

Proof. By using the positivity of the coefficient a, we have
[Aufllr < Cr{ ILfllr + 1l }-
Notice that [£, D] = [0 + v - Oz, D] — [a, D]A,. We have
£, DIfllr < Cref [ fllrr + [ D0l -

The first estimate of Proposition 2.5 is thus deduced by the two inequalities above and the
sub-elliptic estimate (2.3).
To treat ||[£, ©]f||r, we use the sub-elliptic estimate (2.3), which gives

IVofllr < Cr(I£Flr-1/5 + 1 1l0)-
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Now a simple verification shows that

A

I, @l < Cr{ IFle+ D 10w fll }

j=1
Cro{ 1LFl—1y3 + 1 £1l0 }-
This completes the proof of Proposition 2.5.

IN

We are now at a position to prove the Gevrey hypoellipticity of £ . We need the following
result due to M. Durand [9]:

Proposition 2.6. Let P be a linear differential operator with smooth coefficients in Rév and
let 0, be two fived positive numbers. If for r > 0, compact subset K C RN and ¢ € C®(RY),
there exist constants Cr, and Cr () such that for all f € C§°(K), the following conditions
are fulfilled:

(H1) 1fllr < Crr ([P fllr—0 + I fllo),
(Hz) 1P, Dilfllr < Crr(I1Pfllr+1- + 1/ 1l0),
(Hs) I[P, @lfllr < Cr (@) IP fllr—c + I fllo),
where
D; = zaay,j =1,2,---,N.
j

Then for s > max(1/s,2/0), P is GS(RYN) hypoelliptic, provided that the coefficients of P are
in the class of G*(RY).

Proposition 2.1 shows that the operator £ satisfies Condition (H;) with o = 2/3. Proposi-
tion 2.5 assures the conditions (Hz) and (H3) with ¢ = 1/3. Thus, £ is G*(R?*"*1)-hypoelliptic
for s > 3. This completes the proof of Theorem 1.1.

3. GEVREY REGULARITY OF NONLINEAR EQUATIONS

Let u € Ly (R?"T1) be a weak solution of (1.3). We will prove u € C*°(R*"*1). To this
aim, we need the following nonlinear composition result (see for example [23]):

Lemma 3.1. Let F(t,z,v,w,p) € C®°R¥* ") and r > 0. If u,Vyu € LS (R*™ ) N
H (R*Y) then F(-,u(:), Vou(+)) € H] (R*1) with

loc loc

(3.1) |61 (- u(), Vou()) [, < C{ lé2ull, + 62Voul, },

where ¢1, 2 € CO(R?™L), ¢g =1 on the support of ¢1, and C is a constant depending only
onr, qblv ¢2'

Remark: D. If the nonlinear term I is independent of p or in the form of
Vu(F(t, z,v,u))
and if u € L2 (R*"*1) N H] (R*"*1), then it holds that F (-, u(-), Vyu(-)) € Hj, (R*"T1).
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Lemma 3.2. Let u,V,u € H], (R*"™1)r > 0. Then we have
(3.2) le1Voull,, < Clleaull, ,
where g1,y € CS°(R¥* L) g =1 on the support of p1, and C is a constant depending only
onrT,pi1, P2-
In fact, we have
le1Voull, < |[[[Vo, er]ull, + [Voprull, .
Clearly, the first term on the right is bounded by C'||p2ul|,. For the second term , combining

the second inequality in Lemma 2.2 with (3.1), we see the desired estimate (3.2). This
completes the proof of Lemma 3.2.

Now we are ready to prove
Proposition 3.3. Let u be a weak solution of (1.3) such that u, Vyu € LSS (R*"T1). Then u
is in C°(R*+1),

In fact, from the subelliptic estimate (2.3) and the fact that Lu(-) = F (-, u(-), Vyu(+)), it
follows that
(3.3) lrullyra/s < CL G2 F (5 ul), Voul)) e + [$2ullo 3,

where 11,19 € CS°(R?™*1) and 13 = 1 on the support of ¢;. Combining (3.1), (3.2) with
(3.3), we have u € H® (R?"*1) by the standard iteration prcedure. This completes the proof

loc

of Proposition 3.3.

Now starting from a smooth solution, we prove the Gevrey regularity. It suffices for us to
work on the open unit ball

Q= {(t,z,v) € R*"*" - £ 4 |z]* + v < 1}.
Set ;
Q,={(ta,v) e Q: (P+laP+ )P <1-p}, 0<p<l.

Let U be an open subset of R2"*1. Denote by H"(U) the space consisting of the functions
which are defined in U and can be extended to H"(R?"*1). Define

”uHHT(U) = mf {||ﬂ”H5(Rn+1) . ’EL S HS(R2H+1),11|U = u}
We denote |ull, v = |lull gr @), and
ID7ullr = 1D ul.
|B81=3
In order to treat the nonlinear term F on the right hand of (1.3), we need the following
two lemmas. The first one (see [23] for example) concerns weak solutions, and the second

is an analogue of Lemma 1 in [10]. In the sequel, C; > 1 will be used to denote constants
depending only on n or the function F.

Lemma 3.4. Letr > (2n+1)/2 and uy,uz € H"(R**Y). Then ujus € H"(R***1), moreover
(3-4) luruzlly < Cllurlylluzlly,

where C' is a constant depending only on n,r.
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Lemma 3.5. Let M; be a sequence of positive numbers. Assume that for some By > 0, the
M; satisfy the monotonicity condition:

jl
il —a)!
Suppose F(t,x,v,u,p) satisfies that

(3.6) H( tleDmF)( u(-), Vou(")

(3.5) MM] i < BoMj, (i=1,2,---,75; j=1,2,--+).

j 1+ .
Hr+n+1 Q= CJ mMj*QMm—‘rl—Q? 7,m + l > 2,

where r is a real number satisfying r +n + 1 > (2n+ 1)/2. Then there exist two constants
Cy, Cs such that for any Hy, Hy satisfying Ho, H1 > 1 and Hy > CoHy, if u(t,z,v) satisfies
the following conditions

(3.7) 1D7ull4ns19, < Ho, 0<j<1,

(3.8) D7l ins1.0, < HoH{ *M; o, 2<j <N,
(3.9) Do DIty i1, < HoH] °Mj_5, 2<j<N,
then for all o with || = N,

(3.10) [ D [F ) D]y € CoHOY 20

where Y € CG°(825) is an arbitrary function.

Proof of Lemma 3.5: Denote p = (p1,p2,---,pn) = Vyu and k = (k1,ke -+, ky). From
Faa di Bruno’ formula, ¢y D*[F(-,u(:), Vyu(+))] is the linear combination of terms of the
form

1

~ n k
¢N8|a‘+l+|’€|F , i 5,

3.11 ||D7ﬂu-|| ||Dh‘ Op, ),
( ) aa 8Ul8p’1§1 e 8p’£c7,n j=1 ( ' )

t,x,v
where |&| + [ + |k| < |a| and

i=1 ji=1

ZwZZﬁﬁ

=1 7;

Choose a function ¢ € C(‘)’O(Qﬁ) such that ¥ = 1 on Supp ¥n. Notice that n+ 1+ r >
(2n 4 1)/2. Applying Lemma 3.4, we have

(3.12)
¢Na\a|+z+|k\F DYiy - DP%i (9, u
a5, ,Oulopy -~ opin HJ 1 [l HJ =1 (Ou;u) rn+1
B e A RN NV s W
— ||og,  outdp)t-opln b iy iy 0 D rntl
< C Hw (8‘d|+l+|k|F)H ‘Hl— &DWU x [Ti- Hkﬁ_ 1;8 DBy
> N r+n+1 j=1 — i=1 =1 Vi R

IN

Co H(a|d‘+l+|k|F)Hr+n+1,Q . Hé‘:l HDﬁfjuHrJrnH,Qﬁ X H?:l Hf;:l Ha“iDﬂjiuHr-&-n—i—l,Qﬁ .
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With (3.7)-(3.9) and (3.12) at our disposal, our consideration is now similar to that in [10].
Indeed, the only difference is that we need to replace the Hélder norm |ul; by || D?ull;1nt1,0;
and HD'UDJUHT—&-TL—FI,Q/{
(3.10). This completes the proof of Lemma 3.5.

Hence, the same argument as the proof of Lemma 1 in [10] yields

Proposition 3.6. Let s > 3. Suppose u € C®(Q) is a solution of (1.3), a(t,xz,v) €
GS(R*™Y) F(t,x,v,w,p) € G*(R®*2t") and a > co > 0. Then there is a constant A
such that for any r € [0,1] and any N € N, N > 3,
(E)r,N ”Dau||r+n+1,ﬂp + HDU‘Dau||T71/3+n+1,Qp
Alal-1 s o
m((w =3)) (N/p)™, Vl]a|=N,V0<p<Ll
From (E), y , we immediately obtain
Proposition 3.7. Under the same assumption as in Proposition 3.6, we have u € G*(£2).

In fact, for any compact sunset K of €}, we have K C 2,, for some pg with 0 < pg < 1.
For any a with |a| > 3, letting » = 0 in (E), n, we have

la—1 +1
D%l 2y < D% ulns1.0,, < A (ol = 3))° < () (al>.

This completes the proof of Proposition 3.7.

The result of Theorem 1.2 can be directly deduced from Proposition 3.3 and Proposition
3.7.

Proof of Proposition 3.6. We apply an induction argument on N. Assume that (E), n—_1

holds for any r with 0 < r < 1. We will show that (E), y still holds for any r € [0, 1]. For

an o with |a] = N, and for a p with 0 < p < 1, choose a function ¢, v € C§°(Qv-1),) such
N

that ¢, n = 1 in Q,. It is easy to see that
sup| D7, | < Cy(p/N) T < Oy (N/p)1, v .
We will verify the estimate in (E), y by the following lemmas.

Lemma 3.8. For r =0, we have

C7A|a|—2

W((!a\ ~3))%, Vo<p<l

[1D%ullnt1,0, + [DeD%ull—1/31n41.0, <

Proof of Lemma 3.8: Write |a| = |8 + 1. Then |3 = N — 1. Denote 2=1p by 5. In the
sequel, we will often apply the following inequalities:

11 1 N C
x ()<= k=12 ,N-3.
pS

ok = 5k = ek <y T

Notice that ¢, v =1 in €,. Hence
ID%ullnr10, < llepnDllns1 < l@pnD ulliinir + [(Dppn) D ullns1
Cs{ I1D%ull4n+1,9; + (N/p)| D ullns10, 3.

IN
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Since (E), y—1 holds by assumption for any r with 0 <r <1, we have immediately

ID%ull14n+1,0, + (N/p) D ullns1,0,

|6]-1 8|1
< s (191 =9 O/ + (V] 25 (191 = 9))°
|a]—2
< 2 (el =317 (/v - 3)°
|a|—2
= %((lal 3)1)°".
Thus
|a|—2
(3.13) 1D%ullns10, < %((m )",

The same argument as above shows that

o C5CgAlel=2 s
Dy DYl —1/34n41,0, < W((M —-3)1)°

This along with (3.13) yields the conclusion.

Lemma 3.9. For 0 <r < 1/3, we have

035A|a\72
[1D“uly4+n+1.0, + [[DeD%llr—1/31n11,0, < W((M - 3)!)S(N/P)Tsa VO<p<l

Proof of Lemma 3.9: We first verify Lemma 3.9 for » = 1/3, namely, we first show that
|| —2
1Dl /3 1n 41,0, + [DeDullnsr0, < e ((Jal =3)1)°(N/p)*?, ¥0<p<L.

We divide our discussions in the following four steps.

Step 1. We claim that

|| —2

(3.14) 1L, wpNDull—1/34n4+1 < %(004 -3))° (N/p)*/3.

In fact, write £ = Xy — a/\, with Xg = 0; + v - 0. Then a direct verification shows that

I, oo nDull—1/31n41 < [ X0, @onDull-1/z4n41 + alBo, 0o NDJul| 1731041

+lgpnla, DY Dvull 1731041
= (I)+ (II)+ (1II).
Denote [Xy, D®| by D®. Then |ag| < |a| and
(1) X0, @o,N]DUlln+1 + [[9p,n D*ullnt1

Cs{ (N/p)[ID%ullns1,9, + 1D ullnt1,0, }-
Notice that s > 3. By Lemma 3.8, we have

(815) (1) < Cs(N/p+1) %ty ((lal = 3))" < LT (ol - 3)!) (V/p)*/2.

<
<
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Next we will estimate (I7). It is easy to see that

1[Av, @oN]D%ll—1/31041 < 2[[[Dy, 0pN]DuDul|-1/31n41
(3.16)
‘HHDw [Dva SOp,N] ]Do‘u|]_1/3+n+1.

We first consider the first term on the right hand side. By Lemma 3.8 again, we have

I1Dv, @p,N1Du Dl —1/34m41 < (N/p)[[ Do Dl _1/34m41,0,

o] —2
517 < (/o) Sy (ol = 3))°

ChoAlol=2 s .
< %(UOA - 3)!) (N/p) /3,

Next we treat ||[Dy, [Dy, ¢pN] |DYU||—1/34n41- We compute

I1Dv, [Dv; @p.N] 1D ul[—1/34n41

< (D20p,n)DPullaszintr + 1(D30pn) DPull 1 34041
< Cu{ (N/p) QHDBUHz/SJrnHQ + (N/p)*|ID ullns1.0, }
18l
< Oun{ (V/p)” f(\m 5 (181 = 3)) (V/p)>?
5 AlBI-1 e
+(N/p) 5500 3)((W| 3)) }
|a|—2
< On{ (N/pPV1) "< (el = 3))
Alel—2 s
+(N/P)3(N//5)_SW((|@\—3)!) }

|ex]
< %((Ia! 3)!)°(V/p)*/%.

This along with (3.16) and (3.17) shows that

|a|—2
(3.18) (1) < %w = 3))°(N/p)".

It remains to treat (III). By Leibniz’ formula,

(i < > (V)Hsop N(DYa) A D |y gy
0<ly|<lal

Z ( : )[D7allns10- ”Q%,NAUD%V“H—1/3+¢L+1'
0<|vI<] el

Since a € G¥(R?*"1), then

ID7allni10 < CH 72 (1] =3))°%, |l =3,

IN

11
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and
[Dallny1,0 < Cua, Y[ =1, 2.
Moreover, notice that |a|—|y|+1 < N. Applying Lemma 3.8, we have for any v, || < |a|—2,

lop N DD Tul| 1 j34pp1 < HDvDa_WHU”—1/3+n+1,9,3
Crp Alel=ly1+1-2

< ey (ol =l =2)°
Oy Alel=hl+1-2 N
= psllal=hi=2) ((af = =2)1)"

Consequently, we compute

Z ( : MIDYallns10- ||90p,NAvDa_7“|Ll/3+n+1

2<]y|< el -2
le% | |72 5015A|a‘7|7|+172 s
< X (el =) s (el = bl = 2)Y
2<|y[< ]| -2
CrsAl1—2 Ca - “ “
< e > G el =20 (el - - 2)°
p 2<)y|<[al—2
CrAle s Cuayi-1,  (laf = 1)(Jaf —2)
< ———((Ja| = 3)! — «
< e el =30" 3 (S el g g
2<y[<]al -2
|or|—2
< G (el =) /Y (G
P 2<|<lal—2

Making A large enough such that > (%) =1 < 1, then we get
2<]y[< el -2

ClﬁA\aFQ

W((Ial — )N (N/p)*/3.

2<| % | 2( : )‘}D7a||n+1,9 : HSDP,NA"JDOC_WH—U?)MH =
<yI<lal -

For |[v| =1, |a] — 1 or |a|, we can compute directly

CI7A|a\72

W((W - 3)!)S(N/p)s/3‘

( (’)y[ )HDMHMLQ ) ||90p,NAvDa_7“H—1/3+n+1 =

Combination of the above two inequalities give that

CI8A|a\—2

(L) < = s

((la = 3)1)*(N/p).

This along with (3.15) and (3.18) yields the conclusion (3.14).
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Step 2. We next claim that
Coy Alel—2
(319) oo DI (u(), Vou()]1/sensn < S ((Ja] - 3)0) (N/p)*/

We first prove F' and u satisfy the conditions in (3.7)-(3.9) for some M;. By Lemma 3.8,
we have

C7Aj_2

(3.20) I1D7ull -1 j34n11,0, < 1D ullnt10, < W(U -3))°, 3<j<N,
7 C7Aj_2 . s .

(3.21) Do D7 ull 17340410, < 5G9) (G=3))", 3<j<N,

and

(3.22) IDIul|—1/34n+1,0, < Cr, 0<j <2

Since F € G*(R?*"*! x R), then
(3.23)
1(DE, DI F) (- u(), Vo)) [y imire < O (k= 31 (L= 3", kom 123,

Define M;, Hy, H; by setting
(G—1y°

Hy=C7, Hy=A, My=Cr, szw,

J=1

We can choose A large enough such that H; = A > CyHp. Then (3.20)-(3.23) can be
rewritten as

(3.24) I1D7ull~1/31n41,0, < Ho, 0<j<1,
(3.25) 1Dl -1j3in 10, < HoH{ *Mj, 2<j<|a| =N,
(3.26) |DuDIul| 1 j3ni10, < HoH{ 2Mj_5, 2<j <l|a| =N,
(327)  (Dfun0h Dy F)ll—1yssnsre < O5 "My oMpyi g, kym+1>2.
For each j, notice that s > 3. Hence
i il . —1/,. . 1 e g(i—1) ~—a( i
aa MM = (= D)T (G —i= )T e

< GG -2))" 50

(3.28)
j . . 1y
< (J—ljﬁ(‘] - 1)!((] - 1)!)8 P s=1)
< M.



14 GEVREY HYPOELLIPTICITY FOR FOKKER-PLANCK EQUATIONS

Thus M; satisfy the monotonicity condition (3.5). In view of (3.24)-(3.28) and making use
of Lemma 3.5, we have

-2
lep N D IF( ul |1 j3imer < CaHoH™ Mgy,

C3CrAlel=2 s
= ;SJQW((!O&!—W)

C21A|a|72

< W((M —3))°(N/p)*3.

This completes the proof of conclusion (3.19).

Step 3. We verify in this step the following:

C«ng\al—Q

—stary (ol = 3))° (/o).

(3.29) 1£pp,NDY Ul _1/31n41 <
In fact,
[1Lpp NDull—1/34me1 < Cof [[[£, ©pNDull_1/31n41 + 9o N D LUl _1/34n41 }
C22{H[£a gop,NDa]uH,l/ngnH
+{epn DF (- ul), Vv“('))]H—1/3+n+1 I
This along with (3.14), (3.19) in step 1 and step 2 yields immediately the conclusion (3.29).

Step 4. We claim that
|| —2
(3.30)  llopNDull1 /34041 + 0o, 8 DoD¥ul1 /31 /34n+1 < %(004 —3))°(N/p)*/3.
In fact, applying the subelliptic estimate (2.3), we obtain

1908 D ull1/34n4+1 < Coa{ [[Lpp N D ull—1/31m41 + 0o N D ullny1 }-
Combining Lemma 3.8 and (3.29) in Step 3, we have

|a|—2
Cu A7 (o] = 3)1)° (N/p)13.

(3.31) llep.nD%ull1/34n+1 < a3
Now it remains to treat |[¢, N Dy D%ul|1/3-1/34n+1, and
l¢p,N Do D%ull1/3-1/31n+1 < Do, n D*ullnt1 + [[[Doy ©p, NI D ullnt1-
First, we treat the first term on the right. By a direct calculation, it follows that
1Dupp v D*ull7 4
= Re(ﬁgop,NDau, a*1A2"+2gop,NDau) —Re(ngop,NDau, a*1A2"+2cp57k€D°‘u)

1
= Re(ﬁgpp,NDo‘u, a_1A2"+2g0p7ND°‘u) — i(gpp’NDo‘u, [a™ 1A% T2, Xo]gopJVDo‘u)
1 _
_5(90p,NDaU7 [A2n+2a a 1]X090p,NDaU)

Coo{ 1L0p N D ul® ) 31011 + 00N D0} 31001 }-

IN
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This along with (3.29) and (3.31) shows that

027A\oz|—2

—sdaray (ol = 3))° (/o)

[ Dop, N DYully—1/34n11 <

Moreover Lemma 3.8 yields

I[Dv, o NIDUllntr < Cos(N/p)[D*ullnr1.0;

CagCrAlel=2 s )
< i (ol =30 (/)
P
C A|a\—2 s .
— oy (el =3))° (/)%

From the above two inequalities, we have

030A|a|72

l£p, N Do D%y /31741 < W(ﬂa\ - 3)!)5(1\7/,0)8/3.

This completes the proof of Step 4.

It’s clear for any p, 0 < p < 1,

[D%ull1/34n+1.0, T Do DUll1/3-1/31n11,0, < @p.nDUll1 /34041100, N Do D ull1/3-1/34n41-

It thus follows from Step 4 that the conclusion in Lemma 3.9 is true for r = 1/3.
Moreover for any 0 < r < 1/3, using the interpolation inequality (2.2), we have

ID%ullrinr12, < ll@pnDUllrinit

< ellepND%ull1 /34041 + 54/(1/34)H‘Pp,NDaUHnH
Cy A2 NS (N /)5/3 1 e—r/(/3—r) CaaAl? 2 n?
s ¢ ps(‘a|73) ((|Oé| —3)) (N/p) +e€ W((|Oz| —3)) s

Taking € = (N/p)*"=1/3) then

«a C33A‘a|_2 s rs
| D%ullr4nt1,0, < W((M = 3)1)°(N/p)"™.
Similarly,
034A\a|—2

((Jal = 3))*(N/p)"™.

1Du D%l /3m1.00 < = ey

This completes the proof of Lemma 3.9.

Inductively, we have the following

Lemma 3.10. For any r with 1/3 <r <2/3,
(3.32)
C38A|a\—2

—starsy (el =3))°(N/p)", Vo<p<L.

[ D%ullr4nt1.9, + DDl —1/34n41,0, <

Moreover, the above inequality still holds for any r with 2/3 < r < 1.
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Proof of Lemma 3.10: Repeating the proof of Lemma 3.9, we have (3.32) for 1/3 < r < 2/3.
When 2/3 < r < 1, the consideration is a little different. The conclusion in Step 1 in the
above proof still holds for » = 1. For the corresponding Step 2, we have to make some
modification to prove

a la|—2 s s
oo x DIE (), Vo)l g ggn < o (el = 3)) (N/p)*.
From (3.32) with 1/3 < r <2/3, it follows that

‘ Cs7 AT2 s .
1Dl gims1.0, € =55 (G =37 G/p)7 35 <N,

Do D7y j34m41,0, < 1DoDtllajs-1 /31410, < W((j —3))°(j/p)*/?, 3<j<N,

and

ID7ullyj5ns1,0, < Csr 0<j <2,

Hence we need to define a new sequence M; by setting

(G -1’

My=Cs7, M, = w((i + 2)/5)25/3, Jj>1

For each j, notice that s > 3. Hence a direct computation shows that for 0 < i < j,

M;M;_; = ..jy((z’—l))s 1((]—2—1)) -

l'(J z)' i(j—1)

X(i + 2)28/3(j —i+ 2)25/3ﬁ_5(j_2)ﬁ_48/3

IN

40[)(0_2)[) (]+2)2S/3 1(]"‘1)25/3 1x—s(j— l)ﬁ 28/3~s 2s/3

2s/3—1 . s=1_g(j— 2s/3
< OG- )G - D) (G+2)/5)*
< C’ggMj.

In the last inequality, we used the fact that s — 1 > 2s/3. Thus M, satisfy the monotonicity
condition (3.5). Now the remaining argument is identical to that in the proof of Lemma 3.9.
Thus (3.32) holds for » = 1 and thus for 2/3 < r < 1 by the interpolation inequality (2.2).
This completes the proof of Lemma 3.10.

Recall C7, Css and Css are the constants appearing in Lemma 3.8, Lemma 3.9 and Lemma
3.10. Now make A sufficiently large such that A > max{C%, Cs5,Css}. Then, by the above
three Lemmas, we see that the estimate in (E), x holds for any r € [0, 1]. This complete the
proof of Proposition 3.6.
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