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Abstract

In this article we construct the fundamental solutions for the wave equation arising in the de Sitter
model of the universe. We use the fundamental solutions to represent solutions of the Cauchy problem
and to prove the Lp − Lq-decay estimates for the solutions of the equation with and without a source
term.
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0 Introduction and Statement of Results

In this paper we construct the fundamental solutions for the wave equation arising in the de Sitter model
of the universe and use the fundamental solutions to find representations of the solutions to the Cauchy
problem as well as the decay rates for them.

After averaging on a suitable scale, our universe is homogeneous and isotropic; therefore, the properties
of the universe can be properly described by treating the matter as a perfect homogeneous fluid. In the
models of the universe proposed by Einstein [7] and de Sitter [6] the line element is connected with the
proper mass density and the proper pressure in the universe by the field equations for a perfect fluid. There
are two alternatives, which lead to the solutions of Einstein and de Sitter, respectively [15, Sec.132].

The homogeneous and isotropic cosmological models possess highest symmetry that makes them more
amenable to rigorous study. Among them we mention FLRW (Friedmann-Lematre-Robertson-Walker) mod-
els. The simplest class of cosmological models can be obtained if we assume additionally that the metric of
the slices of constant time is flat and that the spacetime metric can be written in the form

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2)

with an appropriate scale factor a(t). Although on the made assumptions, the spatially flat FLRW models
appear to give a good explanation of our universe. The assumption that the universe is expanding leads to
the positivity of the time derivative d

dta(t). A further assumption that the universe obeys the accelerated
expansion suggests that the second derivative d2

dt2 a(t) is positive. A substantial amount of the observational
material can be satisfactorily interpreted in terms of the models, which take into account existing acceleration
of the recession of distant galaxies.

The time dependence of the function a(t) is determined by the Einstein field equations for gravity. The
Einstein equations with the cosmological constant Λ have form

Rµν −
1
2
gµνR = −8πGTµν − Λgµν ,

where term Λgµν can be interpreted as an energy-momentum of the vacuum. Even a small value of Λ could
have drastic effects on the evolution of the universe. Under the assumption of FLRW symmetry the equation
of motion in the case of positive cosmological constant Λ leads to solution

a(t) = a(0)e
√

Λ
3 t,
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which produces models with exponentially accelerated expansion. The model described by the last equation
is usually called the de Sitter model.

The unknown of principal importance in the Einstein equations is a metric g. It comprises the basic
geometrical feature of the gravitational field, and consequently explains the phenomenon of the mutual
gravitational attraction of substance. In the presence of matter these equations contain a non-vanishing
right hand side −8πGTµν . In general, the matter fields described by the function φ must satisfy some
equations of motion, and in the case of the scalar field, the equation of motion is that φ should satisfy the
wave equation generated by the metric g. In the de Sitter universe the equation for the scalar field with
mass m and potential function V is (See, e.g. [8, 19].)

φtt + nφt − e−2t 4 φ = −m2φ− V ′(φ), (0.1)

while for the massless scalar field the equation is

utt + nut − e−2t 4 u = −V ′(u). (0.2)

Here 4 is the Laplacian on the flat metric. The time inversion transformation t → −t reduces the last
equation to the mathematically equivalent equation

utt − nut − e2t 4 u = −V ′(u). (0.3)

Thus, written out explicitly in coordinates the wave equation on de Sitter spacetime takes the form

utt + nHut − e−2Ht 4 u = 0 . (0.4)

In [19] the following ansatz for the formal solutions of the last equation is suggested

∞∑
m=0

(
Am(x)e−mHt +Bm(x)te−mHt

)
.

It is shown that such solutions can be parametrized by A0 and An. It is also claimed in [19] that any solution
has an asymptotic expansion of the type derived on a formal level.

In the case of de Sitter universe the line element may be written [15, Sec.134]

ds2 = −c2 dt2 + e2ct/R(dx2 + dy2 + dz2) .

The coordinates t, x, y, z can take all values from −∞ to ∞. Here R is the “radius” of the universe. The
de Sitter model allows us to get an explanation of the actual red shift of spectral lines observed by Hubble
and Humanson [15]. In a certain sense all solutions look like the de Sitter solution at late times [11]. We
write the de Sitter line element in the form

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2) ,

where H =
√

Λ/3 is Hubble constant. The spacetime metric in the higher dimensional analogue of de Sitter
space is

ds2 = −dt2 + e2Ht
(
(dx1)2 + . . .+ (dxn)2

)
.

It is a simplified version of the multidimensional cosmological models with the metric tensor given by

g = −e2γ(t)dt2 + e2φ1(t)g1 + . . .+ e2φn(t)gn ,

and can be chosen as a starting point for the study. The multidimensional cosmological models have attracted
a lot of attention during recent years in constructing mathematical models of an anisotropic universe (see,
e.g. [5, 11] and references therein).

We take a principal part of the equation (0.4) as an initial model that can be treated first:

∂2
t u− e−2Ht 4 u = 0 . (0.5)

For simplicity, we set H = 1. The time inversion transformation t → −t reduces the last equation to the
mathematically equivalent equation

∂2
t u− e2t 4 u = 0 . (0.6)
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Hence, if we can find the fundamental solution for the linear equation (0.6) associated with (0.3), then it
generates the fundamental solution for the linear equation (0.5) associated with (0.2).

The equation (0.6) is strictly hyperbolic. That implies the well-posedness of the Cauchy problem for (0.6)
in the different functional spaces. The coefficient of the equation is an analytic function and Holmgren’s
theorem implies a local uniqueness in the space of distributions. Moreover, the speed of propagation is
finite, namely, it is equal to et for every t ∈ R. The second-order strictly hyperbolic equation (0.6) possesses
two fundamental solutions resolving the Cauchy problem. They can be written microlocally in terms of the
Fourier integral operators [12], which give a complete description of the wave front sets of the solutions. The
distance between two characteristic roots λ1(t, ξ) and λ2(t, ξ) of the equation (0.6) is

|λ1(t, ξ)− λ2(t, ξ)| = et|ξ|, t ∈ R, ξ ∈ Rn .

It tends to zero as t approaches −∞. Thus, the operator is not uniformly (that is for all t ∈ R) strictly
hyperbolic. Moreover, the finite integrability of the characteristic roots,

∫ 0

−∞ |λi(t, ξ)|dt < ∞, leads to the
existence of so-called “horizon” for that equation. More precisely, any signal emitted from the spatial point
x0 ∈ Rn at time t0 ∈ R remains inside the ball |x− x0| < et0 for all time t ∈ (−∞, t0). The equation (0.6) is
neither Lorentz invariant nor invariant with respect to usual scaling and that brings additional difficulties.
In particular, it can cause a nonexistence of the Lp−Lq decay for the solutions in the backward direction of
time. In [23] it is mentioned the model equation with permanently bounded domain of influence, power decay
of characteristic roots, and without Lp − Lq decay for the solutions that illustrates that phenomenon. The
above mentioned Lp − Lq decay estimates are some of the important tools for studying nonlinear equations
(see, e.g. [18, 20]).

The equation (0.6) was investigated in [9, 10] by the second author. More precisely, in [9, 10] the resolving
operator for the Cauchy problem

∂2
t u− e2t 4 u = 0, u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x) , (0.7)

is written as a sum of the Fourier integral operators with the amplitudes given in terms of the Bessel functions
and in terms of confluent hypergeometric functions. In particular, it is proved in [9, 10] that for t > 0 the
solution of the Cauchy problem (0.7) is given by

u(x, t) = −i 2
(2π)n

∫
Rn

{
ei[x·ξ+(et−1)|ξ|]H+

(1
2
; 1; 2iet|ξ|

)
H−
(3
2
; 3; 2i|ξ|

)
− ei[x·ξ−(et−1)|ξ|]H−

(1
2
; 1; 2iet|ξ|

)
H+

(3
2
; 3; 2i|ξ|

)}
|ξ|2F(ϕ0)(ξ)dξ

−i 1
(2π)n

∫
Rn

{
ei[x·ξ+(et−1)|ξ|]H+

(1
2
; 1; 2iet|ξ|

)
H−
(1
2
; 1; 2i|ξ|

)
− ei[x·ξ−(et−1)|ξ|]H−(

1
2
; 1; 2iet|ξ|)H+

(1
2
; 1; 2i|ξ|

)}
F(ϕ1)(ξ)dξ .

In the notations of [3] the last functions are H−(α; γ; z) = eiαπΨ(α; γ; z) and H+(α; γ; z) = eiαπΨ(γ −
α; γ;−z), where function Ψ(a; c; z) is defined in [3, Sec.6.5]. Here F(ϕ)(ξ) is a Fourier transform of ϕ(x).

The typical Lp − Lq decay estimates obtained in [9, 10] by dyadic decomposition of the phase space
contain some loss of regularity. More precisely, it is proved that for the solution u = u(x, t) to the Cauchy
problem (0.7) with n ≥ 2, ϕ0(x) ∈ C∞0 (Rn) and ϕ1(x) = 0 for all large t ≥ T > 0, the following estimate is
satisfied

‖u(x, t)‖Lq(Rn) ≤ C(1 + et)−
1
2 (n−1)( 1

p−
1
q )‖ϕ0‖W N

p (Rn), (0.8)

where 1 < p ≤ 2, 1
p + 1

q = 1, and 1
2 (n+1)( 1

p−
1
q ) ≤ N < 1

2 (n+1)( 1
p−

1
q )+1 and WN

p (Rn) is the Sobolev space.
In particular, the loss of regularity, N , is positive, unless p = q = 2. This loss of regularity phenomenon exists
for the classical wave equation as well. Indeed, it is well-known (see, e.g., [13, 14, 17]) that for the Cauchy
problem utt −4u = 0 , u(x, 0) = ϕ(x), ut(x, 0) = 0, the estimate ‖u(x, t)‖Lq(Rn

x ) ≤ C‖ϕ(x)‖Lq(Rn
x ) fails

to fulfill even for small positive t unless q = 2. The obstacle is created by the distinguishing feature of the
(different from translation) Fourier integral operators of order zero, which compose a resolving operator.

According to Theorem 1 [10], for the solution u = u(x, t) to the Cauchy problem (0.7) with n ≥ 2,
ϕ0(x) = 0 and ϕ1(x) ∈ C∞0 (Rn) for all large t ≥ T > 0 and for any small ε > 0, the following estimate is
satisfied

‖u(x, t)‖Lq(Rn) ≤ Cε(1 + t)(1 + et)r0−n( 1
p−

1
q )‖ϕ1‖W N

p (Rn),
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where 1 < p ≤ 2, 1
p + 1

q = 1, r0 = max{ε; (n+1)
2 ( 1

p −
1
q )− 1

q},
n+1

2 ( 1
p −

1
q )− 1

q ≤ N < n+1
2 ( 1

p −
1
q ) + 1

p .

The nonlinear equations (0.1) and (0.2) are those we would like to solve, but the linear problem is a
natural first step. Exceptionally efficient tool for the studying nonlinear equations is a fundamental solution
of the associate linear operator.

In the construction of the fundamental solutions for the operator (0.6) we follow the approach proposed
in [22] that allows us to represent the fundamental solutions as some integral of the family of the fundamental
solutions of the Cauchy problem for the wave equation without source term. The kernel of that integral
contains Gauss’s hypergeometric function. In that way, many properties of the wave equation can be extended
to the hyperbolic equations with the time dependent speed of propagation. That approach was successfully
applied in [24, 25] by the first author to investigate the semilinear Tricomi-type equations.

The operator of the equation (0.6) is
S := ∂2

t − e2t4 ,

where x ∈ Rn, t ∈ R, and 4 is the Laplace operator, 4 :=
∑n

j=1
∂2

∂x2
j
. We look for the fundamental solution

(Green’s function, propagator in the literature on Physics) E = E(x, t;x0, t0),

Ett − e2t∆E = δ(x− x0, t− t0),

with a support in the “forward light cone” D+(x0, t0), x0 ∈ Rn, t0 ∈ R, and for the fundamental solution
with a support in the “backward light cone” D−(x0, t0), x0 ∈ Rn, t0 ∈ R, defined as follows

D+(x0, t0) :=
{

(x, t) ∈ Rn+1 ; |x− x0| ≤ et − et0
}
, (0.9)

D−(x0, t0) :=
{

(x, t) ∈ Rn+1 ; |x− x0| ≤ −(et − et0)
}
. (0.10)

In fact, any intersection ofD−(x0, t0) with the hyperplane t = const < t0 determines the so-called dependence
domain for the point (x0, t0), while the intersection of D+(x0, t0) with the hyperplane t = const > t0 is the
so-called domain of influence of the point (x0, t0). The equation (0.6) is non-invariant with respect to time
inversion. Moreover, the domain of influence is wider than any given ball if time const > t0 is sufficiently
large, while the dependence domain is permanently, for all time const < t0, in the ball of the radius et0 .

Define for t0 ∈ R in the domain D+(x0, t0) ∪D−(x0, t0) the function

E(x, t;x0, t0) :=
1√

(et0 + et)2 − (x− x0)2
F
(1

2
,
1
2
; 1;

(et − et0)2 − (x− x0)2

(et + et0)2 − (x− x0)2
)
, (0.11)

where F
(
a, b; c; ζ

)
is the hypergeometric function (See, e.g. [3].). Let E(x, t; 0, b) be a function (0.11), and

set

E+(x, t; 0, t0) :=
{
E(x, t; 0, t0) in D+(0, t0),
0 elsewhere

, E−(x, t; 0, t0) :=
{
E(x, t; 0, t0) in D−(0, t0),
0 elsewhere

.

Since function E = E(x, t; 0, t0) is smooth in D±(0, t0), it follows that E+(x, t; 0, t0) and E−(x, t; 0, t0)
are locally integrable functions and they define distributions whose supports are in D+(0, t0) and D−(0, t0),
respectively. The next theorem gives our first result.

Theorem 0.1 Suppose that n = 1. The distributions E+(x, t; 0, t0) and E−(x, t; 0, t0) are the fundamental
solutions for the operator S := ∂2

t − e2t∂2
x relative to point (0, t0), that is

SE±(x, t; 0, t0) = δ(x, t− t0) or
∂2

∂t2
E±(x, t; 0, t0)− e2t ∂

2

∂x2
E±(x, t; 0, t0) = δ(x, t− t0).

To motivate one construction for the higher dimensional case n > 1 we follow the approach suggested in
[22] and represent fundamental solution E+(x, t; 0, t0) as follows

E+(x, t; 0, t0) =
∫ et−et0

et0−et

Estring(x, r)
1√

(et + et0)2 − r2
F

(
1
2
,
1
2
; 1;

(et − et0)2 − r2

(et + et0)2 − r2

)
dr, t > t0,

where the distribution Estring(x, t) is the fundamental solution of the Cauchy problem for the string equation:

∂2

∂t2
Estring − ∂2

∂x2
Estring = 0, Estring(x, 0) = δ(x), Estring

t (x, 0) = 0 .
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Hence, Estring(x, t) = 1
2{δ(x+ t) + δ(x− t)}. The kernel (0.11) is the even function of x while Estring(x, t)

is even with respect to t. The integral makes sense in the topology of the space of distributions. The
fundamental solution E−(x, t; 0, t0) for t < t0 admits a similar representation.

We appeal to the wave equation in Minkowski spacetime to obtain in the next theorem very similar
representations of the fundamental solutions of the higher dimensional equation in de Sitter spacetime with
n > 1.

Theorem 0.2 If x ∈ Rn, n > 1, and 4 is the Laplace operator, then for the operator

S :=
∂2

∂t2
− e2t4

the fundamental solution E+,n(x, t;x0, t0) (= E+,n(x − x0, t; 0, t0)), with a support in the forward cone
D+(x0, t0), x0 ∈ Rn, t0 ∈ R, suppE+,n ⊆ D+(x0, t0), is given by the following integral (t > t0)

E+,n(x− x0, t; 0, t0) = 2
∫ et−et0

0

Ew(x− x0, r)
1√

(et + et0)2 − r2
F

(
1
2
,
1
2
; 1;

(et − et0)2 − r2

(et + et0)2 − r2

)
dr. (0.12)

Here the function Ew(x, t; b) is a fundamental solution to the Cauchy problem for the wave equation

Ew
tt −4Ew = 0 , Ew(x, 0) = δ(x) , Ew

t (x, 0) = 0 .

The fundamental solution E−,n(x, t;x0, t0) (= E−,n(x − x0, t; 0, t0)) with a support in the backward cone
D−(x0, t0), x0 ∈ Rn, t0 ∈ R, suppE−,n ⊆ D−(x0, t0), is given by the following integral (t < t0)

E−,n(x− x0, t; 0, t0) = −2
∫ 0

et−et0

Ew(x− x0, r)
1√

(et + et0)2 − r2
F

(
1
2
,
1
2
; 1;

(et − et0)2 − r2

(et + et0)2 − r2

)
dr. (0.13)

In particular, the formula (0.12) shows that Huygens’s Principle is not valid for the waves propagating
in the de Sitter model of the universe. Fields satisfying a wave equation in the de Sitter model of universe
can be accompanied by tails propagating inside the light cone. This phenomenon will be discussed in the
spirit of [21] in the forthcoming paper.

Next we use Theorem 0.1 to solve the Cauchy problem for the one-dimensional equation

utt − e2tuxx = f(x, t) , t > 0 , x ∈ R , (0.14)

with vanishing initial data,
u(x, 0) = ut(x, 0) = 0 . (0.15)

Theorem 0.3 Assume that the function f is continuous along with its all second order derivatives, and that
for every fixed t it has a compact support, suppf(·, t) ⊂ R. Then the function u = u(x, t) defined by

u(x, t) =
∫ t

0

db

∫ x+et−eb

x−(et−eb)

f(y, b)
1√

(et + eb)2 − (x− y)2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − (x− y)2

(et + eb)2 − (x− y)2

)
dy

is a C2-solution to the Cauchy problem for the equation (0.14) with vanishing initial data, (0.15).

The representation of the solution of the Cauchy problem for the one-dimensional case (n = 1) of the
equation (0.6) without source term is given by the next theorem.

Theorem 0.4 The solution u = u(x, t) of the Cauchy problem

utt − e2tuxx = 0 , u(x, 0) = ϕ0(x) , ut(x, 0) = ϕ1(x) , (0.16)

with ϕ0, ϕ1 ∈ C∞0 (R) can be represented as follows

u(x, t) =
1
2
e−

t
2

[
ϕ0(x+ et − 1) + ϕ0(x− et + 1)

]
+
∫ et−1

0

[
ϕ0(x− z) + ϕ0(x+ z)

]
K0(z, t) dz

+
∫ et−1

0

[
ϕ1(x− z) + ϕ1(x+ z)

]
K1(z, t)dz ,
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where the kernels K0(z, t) and K1(z, t) are defined by

K0(z, t) := −
( ∂

∂t0
E(z, t; 0, t0)

)∣∣∣
t0=0

= − 1
2((et − 1)2 − z2)

√
(et + 1)2 − z2

×
[
(1− e2t + z2)F

(
− 1

2
,
1
2
; 1;

(et − 1)2 − z2

(et + 1)2 − z2

)
+ 2(et − 1)F

(1
2
,
1
2
; 1;

(et − 1)2 − z2

(et + 1)2 − z2

)]
K1(z, t) := E(z, t; 0, 0) =

1√
(1 + et)2 − z2

F
(1

2
,
1
2
; 1;

(et − 1)2 − z2

(et + 1)2 − z2

)
, 0 ≤ z ≤ et − 1 .

The kernel K0(z, t) has singularity at z = et − 1. The kernels K0(z, t) and K1(z, t) play leading roles in
the derivation of decay estimates. Their main properties are listed and proved in Section 8.

Next we turn to the higher-dimensional equation with n > 1.

Theorem 0.5 If n is odd, n = 2m+ 1, m ∈ N, then the solution u = u(x, t) to the Cauchy problem

utt − e2t∆u = f, u(x, 0) = 0, ut(x, 0) = 0, (0.17)

with f ∈ C∞(Rn+1) and with the vanishing initial data is given by the next expression

u(x, t) = 2
∫ t

0

db

∫ et−eb

0

dr1

(
∂

∂r

(1
r

∂

∂r

)n−3
2 rn−2

ωn−1c
(n)
0

∫
Sn−1

f(x+ ry, b) dSy

)
r=r1

× 1√
(et + eb)2 − r21

F

(
1
2
,
1
2
; 1;

(et − eb)2 − r21
(et + eb)2 − r21

)
, (0.18)

where c(n)
0 = 1 · 3 · . . . · (n− 2). Constant ωn−1 is the area of the unit sphere Sn−1 ⊂ Rn.

If n is even, n = 2m, m ∈ N, then the solution u = u(x, t) is given by the next expression

u(x, t) = 2
∫ t

0

db

∫ et−eb

0

dr1

(
∂

∂r

(1
r

∂

∂r

)n−2
2 2rn−1

ωn−1c
(n)
0

∫
Bn

1 (0)

f(x+ ry, b)√
1− |y|2

dVy

)
r=r1

× 1√
(et + eb)2 − r21

F

(
1
2
,
1
2
; 1;

(et − eb)2 − r21
(et + eb)2 − r21

)
. (0.19)

Here Bn
1 (0) := {|y| ≤ 1} is the unit ball in Rn, while c(n)

0 = 1 · 3 · . . . · (n− 1).

Thus, in both cases, of even and odd n, one can write

u(x, t) = 2
∫ t

0

db

∫ et−eb

0

dr v(x, r; b)
1√

(et + eb)2 − r2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − r2

(et + eb)2 − r2

)
, (0.20)

where the function v(x, t; b) is a solution to the Cauchy problem for the wave equation

vtt −4v = 0 , v(x, 0; b) = f(x, b) , vt(x, 0; b) = 0 .

The next theorem gives representation of the solutions of equation (0.6) with the initial data prescribed
at t = 0.

Theorem 0.6 The solution u = u(x, t) to the Cauchy problem

utt − e2t 4 u = 0, u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x) (0.21)

with ϕ0, ϕ1 ∈ C∞0 (Rn), n > 1, can be represented as follows:

u(x, t) = e−
t
2 vϕ0(x, φ(t)) + 2

∫ 1

0

vϕ0(x, φ(t)s)K0(φ(t)s, t)φ(t) ds

+2
∫ 1

0

vϕ1(x, φ(t)s)K1(φ(t)s, t)φ(t) ds, x ∈ Rn, t > 0, φ(t) := et − 1 , (0.22)
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by means of the kernels K0 and K1 are defined in Theorem 0.4. Here for ϕ ∈ C∞0 (Rn) and for x ∈ Rn,
n = 2m+ 1, m ∈ N,

vϕ(x, φ(t)s) :=

(
∂

∂r

(1
r

∂

∂r

)n−3
2 rn−2

ωn−1c
(n)
0

∫
Sn−1

ϕ(x+ ry) dSy

)
r=φ(t)s

while for x ∈ Rn, n = 2m, m ∈ N ,

vϕ(x, φ(t)s) :=

(
∂

∂r

(1
r

∂

∂r

)n−2
2 2rn−1

ωn−1c
(n)
0

∫
Bn

1 (0)

1√
1− |y|2

ϕ(x+ ry) dVy

)
r=sφ(t)

.

The function vϕ(x, φ(t)s) coincides with the value v(x, φ(t)s) of the solution v(x, t) of the Cauchy problem

vtt −4v = 0, v(x, 0) = ϕ(x), vt(x, 0) = 0 .

As a consequence of the theorems above we obtain in Sections 9-10 for n > 1 the following decay estimate

‖(−4)−su(x, t)‖Lq(Rn) ≤ Cet(2s−n( 1
p−

1
q ))

∫ t

0

(1 + t− b)‖f(x, b)‖Lp(Rn) db

+C(et − 1)2s−n( 1
p−

1
q )
{
‖ϕ0(x)‖Lp(Rn) + ‖ϕ1(x)‖Lp(Rn)(1 + t)(1− e−t)

}
(0.23)

provided that s ≥ 0, 1 < p ≤ 2, 1
p + 1

q = 1, 1
2 (n+1)

(
1
p −

1
q

)
≤ 2s ≤ n

(
1
p −

1
q

)
< 2s+1. Moreover, according

to Theorem 7.1 the estimate (0.23) is valid for n = 1 and s = 0 as well as if ϕ0(x) = 0 and ϕ1(x) = 0. Case
of n = 1, f(x, t) = 0, and non-vanishing ϕ1(x) and ϕ1(x) is discussed in Section 8.

The paper is organized as follows. In Section 1 we construct the fundamental solutions of the operator
(0.6) for the case of n = 1. Then in Section 2 we apply the fundamental solutions to solve the Cauchy
problem with the source term and with the vanishing initial data given at t = 0. More precisely, we give
a representation formula for the solutions. In Section 3 we prove several basic properties of the function
E(x, t; y, b). In Sections 4-5 we use formulas of Section 3 to derive and to complete the list of representation
formulas for the solutions of the Cauchy problem for the case of one-dimensional spatial variable. The
higher-dimensional equation with the source term is considered in Section 6, where we derive a representation
formula for the solutions of the Cauchy problem with the source term and with the vanishing initial data
given at t = 0. In same section this formula is used to derive the fundamental solutions of the operator
and to complete the proof of Theorem 0.6. Then in Sections 7-10 we establish the Lp −Lq decay estimates.
Applications of all these results to the nonlinear equations will be done in the forthcoming paper.

1 Fundamental Solutions. Proof of Theorem 0.1

In the characteristic coordinates l and m,

l = x+ et, m = x− et (1.1)

the operator

S :=
∂2

∂t2
− e2t ∂

2

∂x2

reads

∂2

∂t2
− e2t ∂

2

∂x2
= −(l −m)2

{
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)}
.

Consider point (x, t) = (0, b), then two backward characteristics meet the x line at the points x = a and
x = −a, a := φ(b). Note that the point (l,m) = (φ(b),−φ(b)) represents point (0, b) in characteristic
coordinates. The following lemma is an analog of (2.2)[2], where the Tricomi equation is considered.
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Lemma 1.1 The function

E(l,m; a, b) = (l − b)−1/2(a−m)−1/2F
(1

2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

)
solves the equation {

∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)}
E(l,m; a, b) = 0 . (1.2)

Proof. Indeed, after simple calculations, taking into account (23) of [3, v.1, Sec.2.8]

d

dz
F

(
1
2
,
1
2
; 1; z

)
=

1
2z(1− z)

F

(
−1

2
,
1
2
; 1; z

)
− 1

2z
F

(
1
2
,
1
2
; 1; z

)
, (1.3)

we obtain

∂l

(
(l − b)−

1
2 (a−m)−

1
2F

(
1
2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

))

=
(a−m)F

(
− 1

2 ,
1
2 ; 1; (l−a)(m−b)

(l−b)(m−a)

)
− (l −m)F

(
1
2 ,

1
2 ; 1; (l−a)(m−b)

(l−b)(m−a)

)
2(l − a)

√
l − b

√
a−m(l −m)

,

while

∂m

(
(l − b)−

1
2 (a−m)−

1
2F

(
1
2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

))

=
(b− l)F

(
− 1

2 ,
1
2 ; 1; (l−a)(m−b)

(l−b)(m−a)

)
+ (l −m)F

(
1
2 ,

1
2 ; 1; (l−a)(m−b)

(l−b)(m−a)

)
2
√
l − b

√
a−m(b−m)(l −m)

,

where, for the hypergeometric functions F
(

1
2 ,

1
2 ; 1; z

)
and F

(
− 1

2 ,
1
2 ; 1; z

)
according to Sec. 2.1.3 [3, v.1] we

have from the Euler’s formula

F

(
1
2
,
1
2
; 1; z

)
=

2
π

∫ 1

0

(1− t2)−1/2(1− zt2)−1/2dt, F

(
−1

2
,
1
2
; 1; z

)
=

2
π

∫ 1

0

(1− t2)−1/2(1− zt2)1/2dt.

These functions coincide with the complete elliptic integrals of the first and second kind, K(z) and E(z),
respectively,

K(z) =
π

2
F

(
1
2
,
1
2
, 1, z2

)
, E(z) =

π

2
F

(
−1

2
,
1
2
; 1; z2

)
.

(See (10) of [3, v.1, Sec. 4.8, page 196] and Sec. 13.8 [3, v.2, page 317].) Then to calculate the second
derivative we use (21) of Sec. 2.8 [3, v.1]

d

dz
F

(
−1

2
,
1
2
; 1; z

)
=

1
2z
F

(
−1

2
,
1
2
; 1; z

)
− 1

2z
F

(
1
2
,
1
2
; 1; z

)
,

and obtain

∂l∂m

(
(l − b)−

1
2 (a−m)−

1
2F

(
1
2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

))

= ∂l

 (b− l)F
(
− 1

2 ,
1
2 , 1,

(l−a)(m−b)
(l−b)(m−a)

)
+ (l −m)F

(
1
2 ,

1
2 ; 1; (l−a)(m−b)

(l−b)(m−a)

)
2
√
l − b

√
a−m(b−m)(l −m)


=

1
4(l − a)

√
l − b

√
a−m(b−m)(l −m)2

×

[ (
2ab− al − bl + l2 − (a+ b)m+m2

)
F

(
−1

2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

)

+(l −m)(a− b− l +m)F
(

1
2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

)]
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as well as

− 1
2(l −m)

( ∂
∂l
− ∂

∂m

)
E(l,m; a, b)

= − 1
4(a− l)

√
l − b

√
a−m(b−m)(l −m)2

×

[ (
(b− l)l + bm−m2 + a(−2b+ l +m)

)
F

(
−1

2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

)

+(l −m)(−a+ b+ l −m)F
(

1
2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

)]
.

Hence (1.2) holds. The lemma is proved. �

Consider operator

S∗ch :=
∂2

∂l ∂m
+

1
2(l −m)

( ∂
∂l
− ∂

∂m

)
− 1

(l −m)2

that is the formally adjoint to the operator

Sch :=
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)
of the equation (1.2). The following lemma, is an analog of (2.4)[2].

Lemma 1.2 If v is a solution of the equation S∗chv = 0, then u = (l−m)−1v is a solution to Schu = 0, and
vice versa.

Proof. Indeed, direct calculations lead to

∂

∂l
v = (l −m)

∂

∂l
u+ u,

∂

∂m
v = (l −m)

∂

∂m
u− u,

∂2

∂l ∂m
v = (l −m)

∂2

∂m∂l
u+

∂

∂m
u− ∂

∂l
u .

Then

S∗chv = (l −m)
∂2

∂m∂l
u+

∂

∂m
u− ∂

∂l
u

+
1

2(l −m)

[
(l −m)

∂

∂l
u+ u− (l −m)

∂

∂m
u+ u

]
− 1

(l −m)2
(l −m)u

= (l −m)

{
∂2

∂m∂l
u− 1

2(l −m)

( ∂
∂l
u− ∂

∂m
u
)}

= 0 .

Lemma is proved. �
In the next lemma the Riemann function is presented.

Proposition 1.3 The function

R(l,m; a, b) = (l −m)E(l,m; a, b) = (l −m)(l − b)−1/2(a−m)−1/2F
(1

2
,
1
2
; 1;

(l − a)(m− b)
(l − b)(m− a)

)
is the unique solution of the equation S∗chv = 0 that satisfies the following conditions:

(i) Rl =
1

2(l −m)
R along the line m = b;

(ii) Rm = − 1
2(l −m)

R along the line l = a;

(iii) R(a, b; a, b) = 1.

Proof. It can be easily proven by the direct calculations. �

Next we use Riemann function R(l,m; a, b) and function E(x, t;x0, t0) defined by (0.11) to complete the
proof of Theorem 0.1, which gives the fundamental solution with a support in the forward cone D+(x0, t0),
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x0 ∈ Rn, t0 ∈ R, and the fundamental solution with a support in the backward cone D−(x0, t0), x0 ∈ Rn,
t0 ∈ R, defined by (0.9) and (0.10), respectively.

Proof of Theorem 0.1. We present a proof for E+(x, t; 0, b) since for E−(x, t; 0, b) it is similar. First, we
note that the operator S is formally self-adjoint, S = S∗. We must show that

< E+,Sϕ >= ϕ(0, b) , for every ϕ ∈ C∞0 (R2) .

Since E(x, t; 0, b) is locally integrable in R2, this is equivalent to showing that∫ ∫
R2
E+(x, t; 0, b)Sϕ(x, t) dx dt = ϕ(0, b), for every ϕ ∈ C∞0 (R2). (1.4)

In the mean time D(x, t)/D(l,m) = (l−m)−1 is the Jacobian of the transformation (1.1). Hence the integral
in the left-hand side of (1.4) is equal to∫ ∫

R2
E+(x, t; 0, b)Sϕ(x, t) dx dt =

∫ ∞

b

dt

∫ et−eb

−(et−eb)

E(x, t; 0, b)Sϕ(x, t) dx

= −
∫ −eb

−∞

∫ ∞

eb

E(l,m; eb,−eb)(l −m)−1 dl dm(l −m)2
{

∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)}
ϕ.

We will write ϕ(l,m) for the function ϕ(x, t) in the characteristic variables l, m. Then using the Riemann
function R constructed in Proposition 1.3 we have∫ ∫

R2
E+(x, t; 0, b)Sϕ(x, t) dx dt

= −
∫ −eb

−∞

∫ ∞

eb

R(l,m; eb,−eb)

{
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)}
ϕdl dm .

Integrating by parts several times and applying Proposition 1.3, we obtain (1.4). Indeed,∫ −eb

−∞

∫ ∞

eb

R(l,m; eb,−eb)

{
∂2

∂l ∂m
− 1

2(l −m)

( ∂
∂l
− ∂

∂m

)}
ϕdl dm

=
∫ −eb

−∞

[
R(l,m; eb,−eb)

∂ϕ

∂m

]l=∞

l=eb

dm−
∫ −eb

−∞

∫ ∞

eb

(
∂

∂l
R(l,m; eb,−eb)

)
∂ϕ

∂m
dl dm

−
∫ −eb

−∞

∫ ∞

eb

R(l,m; eb,−eb)
1

2(l −m)

( ∂
∂l
− ∂

∂m

)
ϕdl dm .

On the other hand, using the properties of Riemann function R we obtain∫ −eb

−∞

[
R(l,m; eb,−eb)

∂ϕ

∂m

]l=∞

l=eb

dm

= −
∫ −eb

−∞
R(eb,m; eb,−eb)

∂

∂m
ϕ(eb,m) dm

= −R(eb,−eb; eb,−eb)ϕ |l=eb, m=−eb +
∫ −eb

−∞

(
∂

∂m
R(eb,m; eb,−eb)

)
ϕ(eb,m) dm

= − ϕ|l=eb, m=−eb −
∫ −eb

−∞

1
2(eb −m)

R(eb,m; eb,−eb)ϕ(eb,m) dm ,

while ∫ −eb

−∞

∫ ∞

eb

(
∂

∂l
R(l,m; eb,−eb)

)
∂ϕ

∂m
dl dm

=
∫ ∞

eb

(
∂

∂l
R(l,−eb; eb,−eb)

)
ϕ(l,−eb) dl −

∫ −eb

−∞

∫ ∞

eb

(
∂2

∂l ∂m
R(l,m; eb,−eb)

)
ϕdl dm

=
∫ ∞

eb

1
2(l − (−eb))

R(l,−eb; eb,−eb)ϕ(l,−eb) dl −
∫ −eb

−∞

∫ ∞

eb

(
∂2

∂l ∂m
R(l,m; eb,−eb)

)
ϕdl dm .
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Then ∫ −eb

−∞

∫ ∞

eb

R(l,m; eb,−eb)
1

2(l −m)
∂ϕ

∂l
dl dm

= −
∫ −eb

−∞
R(eb,m; eb,−eb)

1
2(eb −m)

ϕ(eb,m) dm−
∫ −eb

−∞

∫ ∞

eb

(
∂

∂l

(
R(l,m; eb,−eb)

1
2(l −m)

))
ϕdl dm

and ∫ −eb

−∞

∫ ∞

eb

R(l,m; eb,−eb)
1

2(l −m)
∂ϕ

∂m
dl dm

=
∫ ∞

eb

R(l,−eb; eb,−eb)
1

2(l − (−eb))
ϕ(l,−eb) dl −

∫ −eb

−∞

∫ ∞

eb

(
∂

∂m

(
R(l,m; eb,−eb)

1
2(l −m)

))
ϕdl dm.

One more application of Proposition 1.3 completes the proof of Theorem 0.1. �

2 Application to the Cauchy Problem: Source Term and n = 1

Consider now the Cauchy problem for the equation (0.14) with vanishing initial data (0.15). For every
(x, t) ∈ D+(0, b) one has −(et − eb) ≤ x ≤ et − eb, so that

E(x, t; 0, b) =
1√

(et + eb)2 − x2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − x2

(et + eb)2 − x2

)
.

The coefficient of the equation (0.6) is independent of x, therefore E+(x, t; y, b) = E+(x − y, t; 0, b). Using
the fundamental solution from Theorem 0.1 one can write the convolution

u(x, t) =
∫ ∞

−∞

∫ ∞

−∞
E+(x, t; y, b)f(y, b) db dy =

∫ t

0

db

∫ ∞

−∞
E+(x− y, t; 0, b)f(y, b) dy,

which is well-defined since suppf ⊂ {t ≥ 0}. Then according to the definition of the function E+ we obtain
the statement of the Theorem 0.3. Thus, Theorem 0.3 is proven.

Remark 2.1 The argument of the hypergeometric function is nonnegative and bounded,

0 ≤ (et − eb)2 − z2

(et + eb)2 − z2
< 1 for all b ∈ (0, t), z ∈ (eb − et, et − eb) .

The hypergeometric function F
(

1
2 ,

1
2 ; 1; (et−eb)2−z2

(et+eb)2−z2

)
at b = t has a logarithmic singularity. Indeed, this

follows for c = a+ b±m, (m = 0, 1, 2, . . .) from formula 15.3.10 of [1, Ch.15]:

F (a, b; a+ b; z) =
Γ(a+ b)
Γ(a)Γ(b)

∞∑
n=0

(a)n(b)n

(n!)2
[2ψ(n+ 1)− ψ(a+ n)− ψ(b+ n)− ln(1− z)] (1− z)n ,

where | arg(1− z)| < π , |1− z| < 1.

The following corollary is a manifestation of the time-speed transformation principle introduced in [22].
It implies the existence of an operator transforming the solutions of the Cauchy problem for the string
equation to the solutions of the Cauchy problem for the inhomogeneous equation with time-dependent speed
of propagation. One may think of this transformation as a “two-stage” Duhamel’s principal, but unlike the
last one, it reduces the equation with the time-dependent speed of propagation to the one with the speed of
propagation independent of time.

Corollary 2.2 The solution u = u(x, t) of the Cauchy problem (0.14)-(0.15) can be represented as follows

u(x, t) = 2
∫ t

0

db

∫ et−eb

0

dz v(x, z; b)
1√

(et + eb)2 − z2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − z2

(et + eb)2 − z2

)
,

where the functions v(x, t; τ) := 1
2 (f(x + t, τ) + f(x − t, τ)), τ ∈ [0,∞), form a one-parameter family of

solutions to the Cauchy problem for the string equation, that is,

vtt − vxx = 0 , v(x, 0; τ) = f(x, τ) , vt(x, 0; τ) = 0 .
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Proof. From the theorem we have

u(x, t) =
∫ t

0

db

∫ et−eb

−(et−eb)

dz f(z + x, b)
1√

(et + eb)2 − z2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − z2

(et + eb)2 − z2

)

=
∫ t

0

db

∫ et−eb

0

dz f(z + x, b)
1√

(et + eb)2 − z2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − z2

(et + eb)2 − z2

)

+
∫ t

0

db

∫ et−eb

0

dz f(−z + x, b)
1√

(et + eb)2 − z2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − z2

(et + eb)2 − z2

)

= 2
∫ t

0

db

∫ et−eb

0

dz
1
2
{f(x+ z, b) + f(x− z, b)} 1√

(et + eb)2 − z2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − z2

(et + eb)2 − z2

)
.

The corollary is proven. �

3 Some Properties of the Function E(x, t; y, b)

For b ∈ R the function E(x, t; y, b) in the domain D+(y, b)∪D−(y, b) is defined by (0.11), where F
(
a, b; c; ζ

)
is the hypergeometric function. In this section we collect some elementary auxiliary formulas to make proofs
of the main theorems more transparent. For the simplicity we consider case n = 1 in detail. The case of
n > 1 is very similar.

Proposition 3.1 One has

E(x, t; y, b) = E(x− y, t; 0, b) , E(x, t; 0, b) = E(−x, t; 0, b), (3.1)

E(x, t; 0, ln(et − x)) =
1
2

1√
et
√
et − x

, (3.2)

∂

∂b

(
ebE(eb − et, t; 0, b)

)
=

1
4
e−t/2eb/2, (3.3)

∂

∂b

(
bebE(eb − et, t; 0, b)

)
=

∂

∂b

(
bebE(et − eb, t; 0, b)

)
=

∂

∂b

(
beb 1

2
e−t/2e−b/2

)
=

1
4
e−t/2eb/2(2 + b), (3.4)

lim
y→x+et−eb

∂

∂x
E(x− y, t; 0, b) =

1
16
e−2(b+t)eb/2et/2(eb − et), (3.5)

lim
y→x−et+eb

∂

∂x
E(x− y, t; 0, b) =

1
16
e−2(b+t)eb/2et/2(−eb + et), (3.6)[

∂

∂b
E(x, t; 0, b)

]
b=ln(et−x)

=
e−2t

√
et(−4et + x)

16
√
et − x

, (3.7)

∂E

∂b
(z, t; 0, 0) =

1
2((et − 1)2 − z2)

√
(1 + et)2 − z2

{
(1− e2t + z2)F

(
−1

2
,
1
2
; 1;

(et − 1)2 − z2

(et + 1)2 − z2

)
+2(et − 1)F

(
1
2
,
1
2
; 1;

(et − 1)2 − z2

(et + 1)2 − z2

)}
. (3.8)

Proof. The properties (3.1) and (3.2) are evident. To prove (3.3) and (3.4) we write

E(eb − et, t; 0, b) = (2eb)−
1
2 (2et)−

1
2F

(
1
2
,
1
2
; 1; 0

)
=

1
2
e−

b
2 e−

t
2 , (3.9)

that implies (3.3) and (3.4). To prove (3.5) we denote

z :=
(et − eb)2 − (x− y)2

(et + eb)2 − (x− y)2
,

and obtain

∂

∂x
E(x− y, t; 0, b) = −1

2
(x− y + et + eb)−

3
2 (−x+ y + et + eb)−

1
2F

(
1
2
,
1
2
; 1; z

)
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+
1
2
(x− y + et + eb)−

1
2 (−x+ y + et + eb)−

3
2F

(
1
2
,
1
2
; 1; z

)
+
(
(et + eb)2 − (x− y)2

)− 1
2F ′z

(
1
2
,
1
2
; 1; z

)
∂

∂x
z . (3.10)

It is easily seen that

∂

∂x
z = − 8(x− y)et+b

[(x− y)2 − (et + eb)2]2
.

Here
lim

y→x+et−eb
z = 0, lim

y→x+et−eb

∂

∂x
z =

1
2
(e−b − e−t),

while according to (23) [3, Sec.2.8 v.1] we have

∂zF

(
1
2
,
1
2
, 1, z

)
=

1
2z(1− z)

F

(
−1

2
,
1
2
, 1, z

)
− 1

2z
F

(
1
2
,
1
2
, 1, z

)
.

Consequently,

lim
y→x+et−eb

∂zF

(
1
2
,
1
2
, 1, z

)
= lim

z→0

1
2z

{
1

1− z
F

(
−1

2
,
1
2
, 1, z

)
− F

(
1
2
,
1
2
, 1, z

)}
.

In fact (See, e.g.[3].),

F
(1

2
,
1
2
; 1; z

)
= 1 +

1
4
z +O(z2) and F

(
− 1

2
,
1
2
; 1; z

)
= 1− 1

4
z +O(z2) as z → 0 (3.11)

imply

lim
y→x+et−eb

∂zF

(
1
2
,
1
2
, 1, z

)
= lim

z→0

1
2z

{
1

1− z

(
1− 1

4
z +O(z2)

)
−
(

1 +
1
4
z +O(z2)

)}
=

1
4
. (3.12)

Thus, according to (3.10) we obtain

lim
y→x+et−eb

∂

∂x
E(x− y, t; 0, b) = lim

y→x+et−eb
−1

2
(x− y + et + eb)−

3
2 (−x+ y + et + eb)−

1
2

+ lim
y→x+et−eb

1
2
(x− y + et + eb)−

1
2 (−x+ y + et + eb)−

3
2

+ lim
y→x+et−eb

(x− y + et + eb)−
1
2 (−x+ y + et + eb)−

1
2
1
4
· 1
2
(e−b − e−t)

= −1
2
(−et + eb + et + eb)−

3
2 (et − eb + et + eb)−

1
2

+
1
2
(−et + eb + et + eb)−

1
2 (et − eb + et + eb)−

3
2

+(−et + eb + et + eb)−
1
2 (et − eb + et + eb)−

1
2
1
8
(e−b − e−t)

= −1
2
(2eb)−

3
2 (2et)−

1
2 +

1
2
(2eb)−

1
2 (2et)−

3
2 + (2eb)−

1
2 (2et)−

1
2
1
8
(e−b − e−t)

=
1
16
e−2(b+t)e

t
2 e

b
2 (eb − et) .

To prove (3.7) we write

∂

∂b
E(x, t; 0, b) =

(
∂

∂b

(
(et + eb)2 − x2

)− 1
2

)
F

(
1
2
,
1
2
; 1;

x2 − (et − eb)2

x2 − (et + eb)2

)
+
(
(et + eb)2 − x2

)− 1
2
∂

∂b

(
F

(
1
2
,
1
2
; 1;

x2 − (et − eb)2

x2 − (et + eb)2

))
= −eb(et + eb)

(
(et + eb)2 − x2

)− 3
2F

(
1
2
,
1
2
; 1;

x2 − (et − eb)2

x2 − (et + eb)2

)

13



+
(
(et + eb)2 − x2

)− 1
2F ′z

(
1
2
,
1
2
; 1;

x2 − (et − eb)2

x2 − (et + eb)2

)
∂

∂b

(et − eb)2 − x2

(et + eb)2 − x2

= −eb(et + eb)
(
(et + eb)2 − x2

)− 3
2F

(
1
2
,
1
2
; 1;

x2 − (et − eb)2

x2 − (et + eb)2

)
+
(
(et + eb)2 − x2

)− 1
2F ′z

(
1
2
,
1
2
; 1;

x2 − (et − eb)2

x2 − (et + eb)2

)
×−2eb(et − eb)[(et + eb)2 − x2]− [(et − eb)2 − x2]2eb(et + eb)

[(et + eb)2 − x2]2

= −eb(et + eb)
(
(et + eb)2 − x2

)− 3
2F

(
1
2
,
1
2
; 1;

x2 − (et − eb)2

x2 − (et + eb)2

)
+F ′z

(
1
2
,
1
2
; 1;

x2 − (et − eb)2

x2 − (et + eb)2

)
4ebetx2 − 4ebet(e2t − e2b)

[(et + eb)2 − x2]2
√

(et + eb)2 − x2
.

On the other hand (3.12) implies[
∂

∂b
E(x, t; 0, b)

]
b=ln(et−x)

= −
[
eb(et + eb)

(
(et + eb)2 − x2

)− 3
2
]

b=ln(et−x)
F

(
1
2
,
1
2
; 1; 0

)

+F ′z

(
1
2
,
1
2
; 1; 0

)[
4ebetx2 − 4ebet(e2t − e2b)

[(et + eb)2 − x2]2
√

(et + eb)2 − x2

]
b=ln(et−x)

= −
[
eb(et + eb)

(
(et + eb)2 − x2

)− 3
2
]

b=ln(et−x)

+
1
4

[
4ebetx2 − 4ebet(e2t − e2b)

[(et + eb)2 − x2]2
√

(et + eb)2 − x2

]
b=ln(et−x)

. (3.13)

Then[
eb(et + eb)

(
(et + eb)2 − x2

)− 3
2
]

b=ln(et−x)
= (et − x)(2et − x)

(
4et(et − x)

)− 3
2 =

e−2t
√
et(2et − x)

8
√
et − x

(3.14)

and [
ebetx2 − ebet(e2t − e2b)

[(et + eb)2 − x2]2
√

(et + eb)2 − x2

]
b=ln(et−x)

= − e−2t
√
etx

16
√
et − x

. (3.15)

Hence (3.13), (3.14), and (3.15) prove (3.7).

To prove (3.8) we use (3.7) and

∂

∂b
E(z, t; 0, b) = −eb(et + eb)((et + eb)2 − z2)−

3
2F

(
1
2
,
1
2
; 1;

(et − eb)2 − z2

(et + eb)2 − z2

)
+((et + eb)2 − z2)−

1
2
∂

∂b
F

(
1
2
,
1
2
; 1;

(et − eb)2 − z2

(et + eb)2 − z2

)
.

If we denote

ζ =
(et − eb)2 − z2

(et + eb)2 − z2
, ζ0 =

(et − 1)2 − z2

(et + 1)2 − z2
,

then
∂

∂b
ζ =

4ebet(e2b − e2t) + 4z2ebet

[(et + eb)2 − z2]2
,

∂ζ

∂b

∣∣∣
b=0

=
4et(1− e2t) + 4z2et

[(et + 1)2 − z2]2
.

Hence

∂E

∂b
(z, t; 0, 0) = −(et + 1)[(et + 1)2 − z2]−

3
2F

(
1
2
,
1
2
; 1; ζ0

)
+[(et + 1)2 − z2]−

1
2Fζ

(
1
2
,
1
2
; 1; ζ0

)
4et(1− e2t) + 4z2et

[(et + 1)2 − z2]2
.
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According to (1.3) we obtain

∂E

∂b
(z, t; 0, 0)

= −(et + 1)[(et + 1)2 − z2]−
3
2F

(
1
2
,
1
2
; 1; ζ0

)
+[(et + 1)2 − z2]−

1
2

[
1

2ζ0(1− ζ0)
F

(
−1

2
,
1
2
; 1; ζ0

)
− 1

2ζ0
F

(
1
2
,
1
2
; 1; ζ0

)]
4et(1− e2t) + 4z2et

[(et + 1)2 − z2]2

= −(et + 1)[(et + 1)2 − z2]−
3
2F

(
1
2
,
1
2
; 1; ζ0

)
+[(et + 1)2 − z2]−

3
2
2[et(1− e2t) + z2et]

(et − 1)2 − z2

[
1

1− ζ0
F

(
−1

2
,
1
2
; 1; ζ0

)
− F

(
1
2
,
1
2
; 1; ζ0

)]
.

The term with F
(

1
2 ,

1
2 ; 1; ζ0

)
contains a factor

−(et + 1)[(et + 1)2 − z2]−
3
2 − [(et + 1)2 − z2]−

3
2
2[et(1− e2t) + z2et]

(et − 1)2 − z2

= − [(et + 1)2 − z2]−1

[(et − 1)2 − z2]
√

(et + 1)2 − z2

[
(et + 1)[(et − 1)2 − z2] + 2[et(1− e2t) + z2et]

]
,

where

(et + 1)[(et − 1)2 − z2] + 2[et(1− e2t) + z2et] = (−et + 1)[(et + 1)2 − z2] .

The coefficient of F
(
− 1

2 ,
1
2 ; 1; ζ0

)
is

[(et + 1)2 − z2]−
3
2
2[et(1− e2t) + z2et]

(et − 1)2 − z2

1

1− (et−1)2−z2

(et+1)2−z2

=
1
2

1− e2t + z2

[(et − 1)2 − z2]
√

(et + 1)2 − z2
.

The formula (3.8) and, consequently, the proposition are proven. �

4 The Cauchy Problem: Second Datum and n = 1

In this section we prove Theorem 0.4 in the case of ϕ0(x) = 0. More precisely, we have to prove that the
solution u(x, t) of the Cauchy problem (0.16) with ϕ0(x) = 0 and ϕ1(x) = ϕ(x) can be represented as follows

u(x, t) =
∫ et−1

0

[
ϕ(x+z)+ϕ(x−z)

]
K1(z, t)dz =

∫ 1

0

[
ϕ(x+φ(t)s)+ϕ(x−φ(t)s)

]
K1(φ(t)s, t)φ(t)ds, (4.1)

where φ(t) = et − 1. The proof of the theorem is splitted into several steps.

Proposition 4.1 The solution u = u(x, t) of the Cauchy problem (0.16) with ϕ0(x) = 0 and ϕ1(x) = ϕ(x)
can be represented as follows

u(x, t) =
∫ t

0

db
[1
4
e−t/2eb/2(2 + b) +

1
16
be−3t/2eb/2(eb − et)

][
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(y)
( ∂
∂y

)2

E(x− y, t; 0, b) .

Proof. We look for the solution u = u(x, t) of the form u(x, t) = w(x, t) + tϕ(x). Then utt − e2tuxx = 0
implies

wtt − e2twxx = te2tϕ(2)(x), w(x, 0) = 0, wt(x, 0) = 0 .

We set f(x, t) = te2tϕ(2)(x) and due to Theorem 0.3 obtain

w(x, t) =
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(2)(y)E(x− y, t; 0, b) .
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Then we integrate by parts:

w(x, t) =
∫ t

0

be2b db

(
ϕ(1)(x+ et − eb)E(−et + eb, t; 0, b)− ϕ(1)(x− et + eb)E(et − eb, t; 0, b)

)

−
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(1)(y)
∂

∂y
E(x− y, t; 0, b) .

But
ϕ(1)(x+ et − eb) = −e−b ∂

∂b
ϕ(x+ et − eb) and ϕ(1)(x− et + eb) = e−b ∂

∂b
ϕ(x− et + eb)

by one more integration by parts imply

w(x, t)

=

[
beb

(
− ϕ(x+ et − eb)E(−et + eb, t; 0, b)− ϕ(x− et + eb)E(et − eb, t; 0, b)

)]b=t

b=0

−
∫ t

0

db

(
− ϕ(x+ et − eb)

∂

∂b

(
bebE(−et + eb, t; 0, b)

)
− ϕ(x− et + eb)

∂

∂b

(
bebE(et − eb, t; 0, b)

))

−
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(1)(y)
∂

∂y
E(x− y, t; 0, b)

= −2tetϕ(x)E(0, t; 0, t)

−
∫ t

0

db

(
− ϕ(x+ et − eb)

∂

∂b

(
bebE(−et + eb, t; 0, b)

)
− ϕ(x− et + eb)

∂

∂b

(
bebE(et − eb, t; 0, b)

))

−
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(1)(y)
∂

∂y
E(x− y, t; 0, b) .

Since E(0, t; 0, t) = e−t/2 we obtain

u(x, t)

= −
∫ t

0

db

(
− ϕ(x+ et − eb)

∂

∂b

(
bebE(−et + eb, t; 0, b)

)
− ϕ(x− et + eb)

∂

∂b

(
bebE(et − eb, t; 0, b)

))

−
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(1)(y)
∂

∂y
E(x− y, t; 0, b) .

Then we apply (3.4) of Proposition 3.1 to derive the next representation

u(x, t) =
∫ t

0

db
1
4
e−t/2eb/2(2 + b)

(
ϕ(x+ et − eb) + ϕ(x− et + eb)

)
−
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(1)(y)
∂

∂y
E(x− y, t; 0, b) .

The integration by parts and ∂
∂yE(x− y, t; 0, b) = − ∂

∂xE(x− y, t; 0, b) imply

u(x, t) =
∫ t

0

db
1
4
e−t/2eb/2(2 + b)

(
ϕ(x+ et − eb) + ϕ(x− et + eb)

)
+
∫ t

0

be2b dbϕ(x+ et − eb)
[ ∂
∂x
E(x− y, t; 0, b)

]
y=x+et−eb

−
∫ t

0

be2b dbϕ(x− (et − eb))
[ ∂
∂x
E(x− y, t; 0, b)

]
y=x−(et−eb)

+
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(y)
( ∂
∂y

)2

E(x− y, t; 0, b) .
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The application of (3.5) and (3.6) from Proposition 3.1 leads to

u(x, t) =
∫ t

0

db
1
4
e−t/2eb/2(2 + b)

[
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

be2b db
1
16
e−2(b+t)eb/2et/2(eb − et)

[
ϕ(x+ et − eb) + ϕ(x− (et − eb))

]
+
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(y)
( ∂
∂y

)2

E(x− y, t; 0, b)

=
∫ t

0

db
1
4
e−t/2eb/2(2 + b)

[
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

db
1
16
be−3t/2eb/2(eb − et)

[
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(y)
( ∂
∂y

)2

E(x− y, t; 0, b) .

Finally,

u(x, t) =
∫ t

0

db
[1
4
e−t/2eb/2(2 + b) +

1
16
be−3t/2eb/2(eb − et)

][
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(y)
( ∂
∂y

)2

E(x− y, t; 0, b) . (4.2)

To get last representation we have used (3.1) and (3.9). The proposition is proven. �

Corollary 4.2 The solution u = u(x, t) of the Cauchy problem (0.16) with ϕ0(x) = 0 and ϕ1(x) = ϕ(x) can
be represented as follows

u(x, t) =
∫ t

0

db
[1
4
e−t/2eb/2(2 + b) +

1
16
be−3t/2eb/2(eb − et)

][
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

be2b db

∫ et−eb

0

dz
[
ϕ(x− z) + ϕ(x+ z)

]( ∂
∂z

)2

E(z, t; 0, b)

as well as by (4.1), where

K1(z, t) =
[1
4
e−t/2(2+ln(et−z))− 1

16
e−3t/2z ln(et−z)

] 1√
et − z

+
∫ ln(et−z)

0

be2b
( ∂
∂z

)2

E(z, t; 0, b)db. (4.3)

Proof of corollary. In this proof we drop subindex of ϕ1. To prove (4.1) with K1(z, t) defined by (4.3) we
apply (4.2) and write

u(x, t) =
∫ t

0

db
[1
4
e−t/2eb/2(2 + b) +

1
16
be−3t/2eb/2(eb − et)

][
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

be2b db

∫ x+et−eb

x−(et−eb)

dy ϕ(y)
( ∂
∂y

)2

E(y − x, t; 0, b)

=
∫ t

0

db
[1
4
e−t/2eb/2(2 + b) +

1
16
be−3t/2eb/2(eb − et)

][
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

be2b db

∫ et−eb

−(et−eb)

dz ϕ(z + x)
( ∂
∂z

)2

E(z, t; 0, b)

=
∫ t

0

db
[1
4
e−t/2eb/2(2 + b) +

1
16
be−3t/2eb/2(eb − et)

][
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
+
∫ t

0

be2b db

∫ et−eb

0

dz
[
ϕ(x− z) + ϕ(x+ z)

]( ∂
∂z

)2

E(z, t; 0, b) .
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Next we make change z = eb − et, dz = ebdb, and b = ln(z + et) in∫ t

0

db
[1
4
e−t/2eb/2(2 + b) +

1
16
be−3t/2eb/2(eb − et)

][
ϕ(x+ et − eb) + ϕ(x− et + eb)

]
=

∫ et−1

0

[
ϕ(x+ z) + ϕ(x− z)

][1
4
e−t/2(2 + ln(et − z))− 1

16
e−3t/2z ln(et − z)

] 1√
et − z

dz .

Then

u(x, t) =
∫ et−1

0

[
ϕ(x+ z) + ϕ(x− z)

][1
4
e−t/2(2 + ln(et − z))− 1

16
e−3t/2z ln(et − z)

] 1√
et − z

dz

+
∫ et−1

0

dz
[
ϕ(x− z) + ϕ(x+ z)

] ∫ ln(et−z)

0

db be2b
( ∂
∂z

)2

E(z, t; 0, b)

=
∫ et−1

0

[
ϕ(x− z) + ϕ(x+ z)

]
K1(z, t) dz ,

where K1(z, t) is defined by (4.3). Corollary is proven. �
The next lemma completes the proof of Theorem 0.4.

Lemma 4.3 The kernel K1(z, t) defined by (4.3) coincides with one given in Theorem 0.4.

Proof. We have by integration by parts∫ ln(et−z)

0

be2b
( ∂
∂z

)2

E(z, t; 0, b)db =
∫ ln(et−z)

0

b
( ∂
∂b

)2

E(z, t; 0, b)db

= ln(et − z)

[
∂

∂b
E(z, t; 0, b)

]
b=ln(et−z)

− E(z, t; 0, ln(et − z)) + E(z, t; 0, 0).

On the other hand, (3.2) and (3.7) of Proposition 3.1 imply∫ ln(et−z)

0

be2b
( ∂
∂z

)2

E(z, t; 0, b)db = ln(et − z)
∂

∂b
E(z, t; 0, ln(et − z))− 1

2
e−

t
2 (et − z)−

1
2 + E(z, t; 0, 0)

= ln(et − z)
e−2t

√
et (−4et + z)

16
√
et − z

− 1
2
e−

t
2 (et − z)−

1
2 + E(z, t; 0, 0).

Thus, for the kernel K1(z, t) defined by (4.3) we have

K1(z, t) =
[1
4
e−t/2(2 + ln(et − z))− 1

16
e−3t/2z ln(et − z)

] 1√
et − z

+ ln(et − z)
e−2t

√
et (−4et + z)

16
√
et − z

− 1
2
e−

t
2

1√
et − z

+ E(z, t; 0, 0)

=
[1
4
e−t/2 ln(et − z)− 1

16
e−3t/2z ln(et − z)

] 1√
et − z

+ ln(et − z)
e−2t

√
et (−4et + z)

16
√
et − z

+ E(z, t; 0, 0)

= E(z, t; 0, 0) .

The last line can be easily transformed into K1(z, t) of Theorem 0.4. Lemma is proven. �

5 The Cauchy Problem: First Datum and n = 1

In this section we prove Theorem 0.4 in the case of ϕ1(x) = 0. Thus, we have to prove for the solution
u = u(x, t) of the Cauchy problem (0.16) with ϕ1(x) = 0 the representation given by Theorem 0.4 in the
case of ϕ1(x) = 0, which is equivalent to

u(x, t) =
1
2
e−

t
2

[
ϕ0(x+ et − 1) + ϕ0(x− et + 1)

]
+
∫ 1

0

[
ϕ0(x− φ(t)s) + ϕ0(x+ φ(t)s)

]
K0(φ(t)s, t)φ(t) ds,

where φ(t) = et − 1. The proof of this case consists of the several steps.
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Proposition 5.1 The solution u = u(x, t) of the Cauchy problem (0.16) can be represented as follows

u(x, t) =
1
2
e−

t
2

[
ϕ0(x+ et − 1) + ϕ0(x− et + 1)

]
+
∫ t

0

1
4
e

b
2 e−

t
2

[
ϕ0(x+ et − eb) + ϕ0(x− et + eb)

]
db

+
∫ t

0

1
16
e−2te

b
2 e

t
2 (eb − et)

[
ϕ0(x+ et − eb) + ϕ0(x− et + eb)

]
db

+
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ0(y)
( ∂
∂y

)2

E(x− y, t; 0, b) .

Proof. We set u(x, t) = w(x, t) + ϕ0(x), then

wtt − e2twxx = e2tϕ0,xx , w(x, 0) = 0 , wt(x, 0) = 0 .

Next we plug f(x, t) = e2tϕ0,xx in the formula given by Theorem 0.3 and obtain

w(x, t) =
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ
(2)
0 (y)E(x− y, t; 0, b) .

Then we integrate by parts

w(x, t) =
∫ t

0

e2b db
(
ϕ

(1)
0 (x+ et − eb)E(−et + eb, t; 0, b)− ϕ

(1)
0 (x− et + eb)E(et − eb, t; 0, b)

)
−
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ
(1)
0 (y)

∂

∂y
E(x− y, t; 0, b) .

On the other hand,

ϕ
(1)
0 (x+ et − eb) = −e−b ∂

∂b
ϕ0(x+ et − eb), ϕ

(1)
0 (x− et + eb) = e−b ∂

∂b
ϕ0(x− et + eb)

imply

w(x, t) =
∫ t

0

eb db

(
− ∂

∂b
ϕ0(x+ et − eb)E(−et + eb, t; 0, b)− ∂

∂b
ϕ0(x− et + eb)E(et − eb, t; 0, b)

)
−
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ
(1)
0 (y)

∂

∂y
E(x− y, t; 0, b) .

One more integration by parts leads to

w(x, t)
= −2etϕ0(x)E(0, t; 0, t)

−
(
−ϕ0(x+ et − 1)E(−et + 1, t; 0, 0)− ϕ0(x− et + 1)E(et − 1, t; 0, 0)

)
−
∫ t

0

db

(
−ϕ0(x+ et − eb)

∂

∂b

(
ebE(−et + eb, t; 0, b)

)
− ϕ0(x− et + eb)

∂

∂b

(
ebE(et − eb, t; 0, b)

))
−
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ
(1)
0 (y)

∂

∂y
E(x− y, t; 0, b)

= −ϕ0(x) +
1
2
e−

t
2

(
ϕ0(x+ et − 1) + ϕ0(x− et + 1)

)
−
∫ t

0

db

(
−ϕ0(x+ et − eb)

∂

∂b

(
ebE(−et + eb, t; 0, b)

)
− ϕ0(x− et + eb)

∂

∂b

(
ebE(et − eb, t; 0, b)

))
−
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ
(1)
0 (y)

∂

∂y
E(x− y, t; 0, b) .
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We have used

E(0, t; 0, t) =
1
2
e−t, E(et − 1, t; 0, 0) = E(1− et, t; 0, 0) =

1
2
e−

t
2 .

Hence

u(x, t) =
1
2
e−

t
2

(
ϕ0(x+ et − 1) + ϕ0(x− et + 1)

)
−
∫ t

0

db
(
− ϕ0(x+ et − eb)

∂

∂b

(
ebE(−et + eb, t; 0, b)

)
− ϕ0(x− et + eb)

∂

∂b

(
ebE(et − eb, t; 0, b)

))
−
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ
(1)
0 (y)

∂

∂y
E(x− y, t; 0, b) .

Next we apply (3.1) and (3.3) of Proposition 3.1 and the integration by parts to obtain

u(x, t)

=
1
2
e−

t
2

(
ϕ0(x+ et − 1) + ϕ0(x− et + 1)

)
+
∫ t

0

db
1
4
e

b
2 e−

t
2

(
ϕ0(x+ et − eb) + ϕ0(x− et + eb)

)
−
∫ t

0

e2b db
[
ϕ0(y)

∂

∂y
E(x− y, t; 0, b)

]y=x+et−eb

y=x−(et−eb)
+
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ0(y)
( ∂
∂y

)2

E(x− y, t; 0, b).

We have due to (3.5) and (3.6) of Proposition 3.1

u(x, t) =
1
2
e−

t
2

(
ϕ0(x+ et − 1) + ϕ0(x− et + 1)

)
+
∫ t

0

db
1
4
e

b
2 e−

t
2

(
ϕ0(x+ et − eb) + ϕ0(x− et + eb)

)
−
∫ t

0

e2b db
[
− ϕ0(x+ et − eb)

1
16
e−2(b+t)eb/2et/2(eb − et)

+ϕ0(x− (et − eb))
1
16
e−2(b+t)eb/2et/2(−eb + et)

]
+
∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ0(y)
( ∂
∂y

)2

E(x− y, t; 0, b) ,

which coincides with the desired representation. The proposition is proven. �
Completion of the proof of Theorem 0.4. We make change z = eb−et, dz = ebdb, and b = ln(z+et)

in the second and third terms of the representation given by the previous proposition:∫ t

0

1
4
e

b
2 e−

t
2

[
ϕ0(x+ et − eb) + ϕ0(x− et + eb)

]
db

+
∫ t

0

1
16
e−2te

b
2 e

t
2 (eb − et)

[
ϕ0(x+ et − eb) + ϕ0(x− et + eb)

]
db

=
∫ et−1

0

[1
4
e−

t
2 − 1

16
e−2te

t
2 z
] 1√

et − z

[
ϕ0(x− z) + ϕ0(x+ z)

]
dz .

Next we consider the last term apply (3.1), and change the order of integration:∫ t

0

e2b db

∫ x+et−eb

x−(et−eb)

dy ϕ0(y)
( ∂
∂y

)2

E(x− y, t; 0, b)

=
∫ t

0

e2b db

∫ et−eb

0

dz
[
ϕ0(x− z) + ϕ0(x+ z)

]( ∂
∂z

)2

E(z, t; 0, b)

=
∫ et−1

0

dz
[
ϕ0(x− z) + ϕ0(x+ z)

] ∫ ln(et−z)

0

e2b db
( ∂
∂z

)2

E(z, t; 0, b) .

On the other hand, due to
(

∂
∂z

)2
E(z, t; 0, b) = e−2b

(
∂
∂b

)2
E(z, t; 0, b) the last integral is equal to∫ et−1

0

dz
[
ϕ0(x− z) + ϕ0(x+ z)

] ∫ ln(et−z)

0

( ∂
∂b

)2

E(z, t; 0, b) db

=
∫ et−1

0

dz
[
ϕ0(x− z) + ϕ0(x+ z)

][ ∂
∂b
E(z, t; 0, ln(et − z))− ∂

∂b
E(z, t; 0, 0)

]
.
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According to (3.7) and (3.8) we have[1
4
e−

t
2 − 1

16
e−2te

t
2 z
] 1√

et − z
+
∂E

∂b
(z, t; 0, ln(et − z))− ∂E

∂b
(z, t; 0, 0)

= − 1
2((et − 1)2 − z2)

√
(1 + et)2 − z2

{
(1− e2t + z2)F

(
−1

2
,
1
2
; 1;

(et − 1)2 − z2

(et + 1)2 − z2

)
+2(et − 1)F

(
1
2
,
1
2
; 1;

(et − 1)2 − z2

(et + 1)2 − z2

)}
.

Theorem 0.4 is proven. �

6 n-Dimensional Case, n > 1

The proof of Theorem 0.5. Let us consider the case x ∈ Rn, where n = 2m+ 1, m ∈ N. First for the given
function u = u(x, t) we define the spherical means of u about point x:

Iu(x, r, t) =
1

ωn−1

∫
Sn−1

u(x+ ry, t) dSy ,

where ωn−1 denotes the area of the unit sphere Sn−1 ⊂ Rn. Then we define an operator Ωr by

Ωr(u)(x, t) :=
(1
r

∂

∂r

)m−1

r2m−1Iu(x, r, t) .

One can show that there are constants c(n)
j , j = 0, . . . ,m−1, where n = 2m+1, with c(n)

0 = 1 ·3 ·5 · · · (n−2),
such that (1

r

∂

∂r

)m−1

r2m−1ϕ(r) = r
m−1∑
j=0

c
(n)
j rj ∂

j

∂rj
ϕ(r) .

One can recover the functions according to

u(x, t) = lim
r→0

Iu(x, r, t) = lim
r→0

1

c
(n)
0 r

Ωr(u)(x, t) , (6.1)

u(x, 0) = lim
r→0

1

c
(n)
0 r

Ωr(u)(x, 0) , ut(x, 0) = lim
r→0

1

c
(n)
0 r

Ωr(∂tu)(x, 0) . (6.2)

It is well known that ∆xΩrh = ∂2

∂ r2 Ωrh for every function h ∈ C2(Rn). Therefore we arrive at the following
mixed problem for the function v(x, r, t) := Ωr(u)(x, r, t):

vtt(x, r, t)− e2tvrr(x, r, t) = F (x, r, t) for all t ≥ 0 , r ≥ 0 , x ∈ Rn ,
v(x, 0, t) = 0 for all t ≥ 0 , x ∈ Rn

v(x, r, 0) = 0 , vt(x, r, 0) = 0 for all r ≥ 0 , x ∈ Rn ,
F (x, r, t) := Ωr(f)(x, t) , F (x, 0, t) = 0 , for all x ∈ Rn .

It must be noted here that the spherical mean Iu defined for r > 0 has an extension as even function for
r < 0 and hence Ωr(u) has a natural extension as an odd function. That allows replacing the mixed problem
with the Cauchy problem. Namely, let functions ṽ and F̃ be the continuations of the functions v and F ,
respectively, by

ṽ(x, r, t) =
{
v(x, r, t), if r ≥ 0
−v(x,−r, t), if r ≤ 0 , F̃ (x, r, t) =

{
F (x, r, t), if r ≥ 0
−F (x,−r, t), if r ≤ 0 .

Then ṽ solves the Cauchy problem

ṽtt(x, r, t)− e2tṽrr(x, r, t) = F̃ (x, r, t) for all t ≥ 0 , r ∈ R , x ∈ Rn ,

ṽ(x, r, 0) = 0 , ṽt(x, r, 0) = 0 for all r ∈ R , x ∈ Rn.
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Hence according to Theorem 0.3 one has the representation

ṽ(x, r, t) =
∫ t

0

db

∫ r+et−eb

r−(et−eb)

dr1 F̃ (x, r1, b)
1√

(et + eb)2 − (r − r1)2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − (r − r1)2

(et + eb)2 − (r − r1)2

)
.

Since u(x, t) = limr→0

(
ṽ(x, r, t)/(c(n)

0 r)
)
, we consider the case with r < t in the above representation to

obtain:

u(x, t) = lim
r→0

1

c
(n)
0 r

∫ t

0

db

∫ et−eb

−(et−eb)

dz F̃ (x, z + r, b)
1√

(et + eb)2 − z2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − z2

(et + eb)2 − z2

)

=
1

c
(n)
0

∫ t

0

db

∫ et−eb

0

dr1 lim
r→0

1
r

{
F̃ (x, r + r1, b) + F̃ (x, r − r1, b)

}
× 1√

(et + eb)2 − r21
F

(
1
2
,
1
2
; 1;

(et − eb)2 − r21
(et + eb)2 − r21

)
.

Then by definition of the function F̃ we replace limr→0
1
r

{
F̃ (x, r − r1, b) + F̃ (x, r + r1, b)

}
with

2
(

∂
∂rF (x, r, b)

)
r=r1

in the last formula. The definitions of F (x, r, t) and of the operator Ωr yield:

u(x, t) =
2

c
(n)
0

∫ t

0

db

∫ et−eb

0

dr1

(
∂

∂r

(1
r

∂

∂r

)m−1

r2m−1If (x, r, t)
)

r=r1

× 1√
(et + eb)2 − r21

F

(
1
2
,
1
2
; 1;

(et − eb)2 − r21
(et + eb)2 − r21

)
,

where x ∈ Rn, n = 2m+ 1, m ∈ N. Thus the solution to the Cauchy problem is given by (0.18). We employ
the method of descent to complete the proof for the case with even n, n = 2m, m ∈ N. Theorem 0.5 is
proven. �
Proof of (0.12) and (0.13). We set f(x, b) = δ(x)δ(t− t0) in (0.18) and (0.19), and we obtain (0.12) and
(0.13), where if n is odd,

Ew(x, t) :=
1

ωn−11 · 3 · 5 . . . · (n− 2)
∂

∂t

(1
t

∂

∂t

)n−3
2 1
t
δ(|x| − t) ,

while for n even we have

Ew(x, t) :=
2

ωn−11 · 3 · 5 . . . · (n− 1)
∂

∂t

(1
t

∂

∂t

)n−2
2 1√

t2 − |x|2
χBt(x) .

Here χBt(x) denotes the characteristic function of the ball Bt(x) := {x ∈ Rn; |x| ≤ t}. Constant ωn−1 is the
area of the unit sphere Sn−1 ⊂ Rn. The distribution δ(|x| − t) is defined by

< δ(| · | − t), f(·) >=
∫
|x|=t

f(x) dx for all f ∈ C∞0 (Rn) .

The proof of Theorem 0.6. First we consider case of ϕ0(x) = 0. More precisely, we have to prove that the
solution u(x, t) of the Cauchy problem (0.21) with ϕ0(x) = 0 can be represented by (0.22) with ϕ0(x) = 0.
The next lemma will be used in both cases.

Lemma 6.1 Consider the mixed problem vtt − e2tvrr = 0 for all t ≥ 0 , r ≥ 0 ,
v(r, 0) = τ0(r) , vt(r, 0) = τ1(r) for all r ≥ 0 ,
v(0, t) = 0 for all t ≥ 0 ,

and denote by τ̃0(r) and τ̃1(r) the continuations of the functions τ0(r) and τ1(r) for negative r as odd
functions: τ̃0(−r) = −τ0(r) and τ̃1(−r) = −τ1(r) for all r ≥ 0, respectively. Then solution v(r, t) to the
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mixed problem is given by the restriction of (4.1) to r ≥ 0:

v(r, t) =
1
2
e−

t
2

[
τ̃0(r + et − 1) + τ̃0(r − et + 1)

]
+
∫ 1

0

[
τ̃0(r − φ(t)s) + τ̃0(r + φ(t)s)

]
K0(φ(t)s, t)φ(t) ds

+
∫ 1

0

[
τ̃1

(
r + φ(t)s

)
+ τ̃1

(
r − φ(t)s

)]
K1(φ(t)s, t)φ(t) ds ,

where K0(z, t) and K1(z, t) are defined in Theorem 0.4 and φ(t) = et − 1.

Proof. This lemma is a direct consequence of Theorem 0.4. �

Now let us consider the case x ∈ Rn, where n = 2m+1. First for the given function u = u(x, t) we define
the spherical means of u about point x. One can recover the functions by means of (6.1), (6.2), and

ϕi(x) = lim
r→0

Iϕi
(x, r) = lim

r→0

1

c
(n)
0 r

Ωr(ϕi)(x) , i = 0, 1 .

Then we arrive at the following mixed problem vtt(x, r, t)− e2tvrr(x, r, t) = 0 for all t ≥ 0 , r ≥ 0 , x ∈ Rn ,
v(x, 0, t) = 0 for all t ≥ 0 , x ∈ Rn ,
v(x, r, 0) = 0 , vt(x, r, 0) = Φ1(x, r) for all r ≥ 0 , x ∈ Rn ,

with the unknown function v(x, r, t) := Ωr(u)(x, r, t), where

Φi(x, r) := Ωr(ϕi)(x) =
(1
r

∂

∂r

)m−1

r2m−1 1
ωn−1

∫
Sn−1

ϕi(x+ ry) dSy , (6.3)

Φi(x, 0) = 0 , i = 0, 1, for all x ∈ Rn . (6.4)

Then, according to Lemma 6.1 and u(x, t) = limr→0

(
v(x, r, t)/(c(n)

0 r)
)
, we obtain:

u(x, t) =
1

c
(n)
0

lim
r→0

1
r

∫ 1

0

[
Φ̃1

(
x, r + φ(t)s

)
+ Φ̃1

(
x, r − φ(t)s

)]
K1(φ(t)s, t)φ(t) ds .

The last limit is equal to

2
∫ 1

0

(
∂

∂r
Φ1(x, r)

)
r=φ(t)s

K1(φ(t)s, t)φ(t) ds

= 2
∫ 1

0

(
∂

∂r

(1
r

∂

∂r

)n−3
2 rn−2

ωn−1

∫
Sn−1

ϕ1(x+ ry) dSy

)
r=φ(t)s

K1(φ(t)s, t)φ(t) ds .

Thus, Theorem 0.6 in the case of ϕ0(x) = 0 is proven.

Now we turn to the case of ϕ1(x) = 0. Thus, we arrive at the following mixed problem vtt(x, r, t)− e2tvrr(x, r, t) = 0 for all t ≥ 0 , r ≥ 0 , x ∈ Rn ,
v(x, r, 0) = Φ0(x, r) , vt(x, r, 0) = 0 for all r ≥ 0 , x ∈ Rn ,
v(x, 0, t) = 0 for all t ≥ 0 , x ∈ Rn ,

with the unknown function v(x, r, t) := Ωr(u)(x, r, t) defined by (6.3), (6.4). Then, according to Lemma 6.1
and u(x, t) = limr→0

(
v(x, r, t)/(c(n)

0 r)
)
, we obtain:

u(x, t) =
1

c
(n)
0

e−
t
2 lim

r→0

1
2r

[
Φ̃0(x, r + et − 1) + Φ̃0(x, r − et + 1)

]
+

2

c
(n)
0

∫ 1

0

lim
r→0

1
2r
[
Φ̃0(x, r − φ(t)s) + Φ̃0(x, r + φ(t)s)

]
K0(φ(t)s, t)φ(t) ds ,

=
1

c
(n)
0

e−
t
2

(
∂

∂r
Φ0(x, r)

)
r=φ(t)

+
2

c
(n)
0

∫ 1

0

(
∂

∂r
Φ0(x, r)

)
r=φ(t)s

K0(φ(t)s, t)φ(t) ds

= e−
t
2 vϕ0(x, φ(t)) + 2

∫ 1

0

vϕ0(x, φ(t)s)K0(φ(t)s, t)φ(t) ds .

Theorem 0.6 is proven. �
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7 Lp − Lq Decay and Lq − Lq Estimates for the Solutions of One-
dimensional Equation, n = 1

Consider now the Cauchy problem for the equation (0.14) with the source term and with vanishing initial
data (0.15).

Theorem 7.1 For every function f ∈ C2(R× [0,∞)) such that f(·, t) ∈ C∞0 (Rx) the solution u = u(x, t) of
the Cauchy problem (0.14), (0.15) satisfies inequality

‖u(x, t)‖Lq(Rx) ≤ Ce
t
ρ−t

∫ t

0

(1 + t− b)‖f(x, b)‖Lp(Rx) db

for all t > 0, where 1 < p < ρ′, 1
q = 1

p −
1
ρ′ , ρ < 2, 1

ρ + 1
ρ′ = 1.

Proof. Using the fundamental solution from Theorem 0.1 one can write the convolution

u(x, t) =
∫ ∞

−∞

∫ ∞

−∞
E+(x, t; y, b)f(y, b) db dy =

∫ t

0

db

∫ ∞

−∞
E+(x− y, t; 0, b)f(y, b) dy .

Due to Young’s inequality we have

‖u(x, t)‖Lq(Rx) ≤ ck

∫ t

0

db

(∫ φ(t)−φ(b)

−(φ(t)−φ(b))

|E(x, t; 0, b)|ρdx

)1/ρ

‖f(x, b)‖Lp(Rx),

where 1 < p < ρ′, 1
q = 1

p −
1
ρ′ ,

1
ρ + 1

ρ′ = 1. The integral in parentheses can be transformed as follows

∫ φ(t)−φ(b)

−(φ(t)−φ(b))

|E(x, t; 0, b)|ρdx = 2eb−bρ

∫ et−b−1

0

((et−b + 1)2 − r2)−
ρ
2F

(
1
2
,
1
2
; 1;

(et−b − 1)2 − r2

(et−b + 1)2 − r2

)ρ

dr.

Lemma 7.2 For all z > 1 the following estimate∫ z−1

0

((z + 1)2 − r2)−
ρ
2F

(
1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)ρ

dr ≤ C(1 + ln z)ρ(z − 1)(z + 1)−ρF
(1

2
,
ρ

2
;
3
2
;
(z − 1)2

(z + 1)2
)

is fulfilled, provided that 1 < p < ρ′, 1
q = 1

p −
1
ρ′ ,

1
ρ + 1

ρ′ = 1. In particular, if ρ < 2, then∫ z−1

0

((z + 1)2 − r2)−
ρ
2F

(
1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)ρ

dr ≤ C(1 + ln z)ρ(z − 1)(z + 1)−ρ .

Proof. We rewrite the argument of the hypergeometric function as follows

(z − 1)2 − r2

(z + 1)2 − r2
= 1− 4z

(z + 1)2 − r2
.

If
r ≥

√
(z + 1)2 − 8z , (7.1)

then
4z

(z + 1)2 − r2
≥ 1

2
=⇒ 0 < 1− 4z

(z + 1)2 − r2
≤ 1

2
(7.2)

for such r and z implies ∣∣∣∣F (1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)∣∣∣∣ ≤ C . (7.3)

Hence for ρ > 0 we have∫ z−1

√
(z+1)2−8z

((z+ 1)2 − r2)−
ρ
2F

(
1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)ρ

dr ≤ C(z− 1)(z+ 1)−ρF

(
1
2
,
ρ

2
;
3
2
;
(z − 1)2

(z + 1)2

)
.
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If
r ≤

√
(z + 1)2 − 8z and z ≥ 6 ,

then 8 < 8z ≤ (z + 1)2 − r2 ≤ (z + 1)2, implies∣∣∣∣F (1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)∣∣∣∣ ≤ C

∣∣∣∣ln( 4z
(z + 1)2 − r2

)∣∣∣∣ ≤ C(1 + ln z) .

Hence ∫ √(z+1)2−8z

0

((z + 1)2 − r2)−
ρ
2F

(
1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)ρ

dr

≤ C(1 + ln z)ρ(z − 1)(z + 1)−ρF
(1

2
,
ρ

2
;
3
2
;
(z − 1)2

(z + 1)2
)
.

The lemma is proven. �

Completion of the proof of Theorem 7.1. Thus for ρ < 2 and z = et−b we have

‖u(x, t)‖Lq(Rx) ≤ c

∫ t

0

e
b
ρ−b(1 + ln z)(z − 1)1/ρ(z + 1)−1‖f(x, b)‖Lp(Rx) db

≤ c

∫ t

0

e
b
ρ−b(1 + t− b)(et−b − 1)1/ρ(et−b + 1)−1‖f(x, b)‖Lp(Rx) db

≤ c

∫ t

0

e
b
ρ−b(1 + t− b)e

t
ρ−

b
ρ e−t+b‖f(x, b)‖Lp(Rx) db .

The last inequality implies the estimate of the statement of theorem. Theorem 7.1 is proven. �

Proposition 7.3 The solution u = u(x, t) of the Cauchy problem

utt − e2tuxx = 0 , u(x, 0) = ϕ0(x) , ut(x, 0) = ϕ1(x) ,

with ϕ0, ϕ1 ∈ C∞0 (R) satisfies the following estimate

‖u(x, t)‖Lq(R) ≤ C
(
‖ϕ0(x)‖Lq(R) + (1 + t)‖ϕ1(x)‖Lq(R)

)
for all t ∈ (0,∞). (7.4)

Proof. First we consider the equation without source term but with the second datum that is the case of
ϕ0 = 0. For the convenience we drop subindex of ϕ1. Then we apply the representation given by Theorem 0.4
for the solution u = u(x, t) of the Cauchy problem with ϕ0 = 0, and obtain

‖u(x, t)‖Lq(R) ≤ 2‖ϕ(x)‖Lq(R)

∫ et−1

0

|K1(r, t)|dr .

To estimate the last integral we write ∫ et−1

0

|K1(r, t)|dr ≤ I1(et) , (7.5)

where for z = et > 1 we denote

I1(z) :=
∫ z−1

0

1√
(1 + z)2 − r2

F

(
1
2
,
1
2
; 1;

r2 − (z − 1)2

r2 − (z + 1)2

)
dr . (7.6)

Then, according to Lemma 7.2 (where ρ = 1) we have for that integral the following estimate

I1(et) ≤ C(1 + t) . (7.7)
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Finally, (7.5) to (7.7) imply the Lq − Lq estimate (7.4) for the case of ϕ0 = 0.

Next we consider the equation without source but with the first datum, that is, the case of ϕ1 = 0.
We apply the representation given by Theorem 0.4 for the solution u = u(x, t) of the Cauchy problem with
ϕ1 = 0, and obtain

‖u(x, t)‖Lq(R) ≤ e−
t
2 ‖ϕ0(x)‖Lq(R) + 2‖ϕ0(x)‖Lq(R)

∫ et−1

0

|K0(z, t)| dz .

Thus, we have to estimate the integral
∫ et−1

0
|K0(r, t)| dr . The following lemma completes the proof of

proposition.

Lemma 7.4 The kernel K0(r, t) has an integrable singularity at r = et − 1, more precisely, one has∫ et−1

0

|K0(r, t)| dr ≤ C for all t ∈ [0,∞) .

Proof. Consider the argument (et−1)2−r2

(et+1)2−r2 of the hypergeometric function and its derivative. Denote z = et,

then 0 ≤ (et−1)2−r2

(et+1)2−r2 = (z−1)2−r2

(z+1)2−r2 ≤ 1. The formula (3.11) describes the behavior of those functions at the
neighbourhood of zero. Hence, if ε > 0 is small, then for all z and r such that

(z − 1)2 − r2

(z + 1)2 − r2
≤ ε (7.8)

one has

F
(
± 1

2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
= 1± 1

4
(z − 1)2 − r2

(z + 1)2 − r2
+O

((
(z − 1)2 − r2

(z + 1)2 − r2

)2
)
. (7.9)

Consider therefore two zones,

Z1(ε, z) :=
{

(z, r)
∣∣∣ (z − 1)2 − r2

(z + 1)2 − r2
≤ ε, 0 ≤ r ≤ z − 1

}
, (7.10)

Z2(ε, z) :=
{

(z, r)
∣∣∣ ε ≤ (z − 1)2 − r2

(z + 1)2 − r2
, 0 ≤ r ≤ z − 1

}
. (7.11)

We split integral into two parts:∫ et−1

0

|K0(r, t)| dr =
∫

(z,r)∈Z1(ε,z)

|K0(r, t)| dr +
∫

(z,r)∈Z2(ε,z)

|K0(r, t)| dr .

In the first zone we have∣∣∣∣(1− z2 + r2)F
(
− 1

2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
+ 2(z − 1)F

(1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣
=

(
(z − 1)2 − r2

) ∣∣∣∣1 +
1
4

3− z2 − 2z + r2

(z + 1)2 − r2

∣∣∣∣+ (z2 + 2z − 3− r2
)
O

((
(z − 1)2 − r2

(z + 1)2 − r2

)2
)
. (7.12)

Consider therefore,

A1 :=
∫

(z,r)∈Z1(ε,z)

1√
(z + 1)2 − r2

dr ≤
∫ z−1

0

1√
(z + 1)2 − r2

dr ≤ π

2
for all z ∈ [1,∞) ,

A2 :=
∫

(z,r)∈Z1(ε,z)

1
((z + 1)2 − r2)

√
(z + 1)2 − r2

∣∣3− z2 − 2z + r2
∣∣dr

≤ C

∫ z−1

0

1√
(z + 1)2 − r2

dr

≤ π

2
for all z ∈ [1,∞) ,
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and

A3 :=
∫

(z,r)∈Z1(ε,z)

z2 + 2z − 3− r2√
(z + 1)2 − r2

(z − 1)2 − r2

((z + 1)2 − r2)2
dr

≤
∫

(z,r)∈Z1(ε,z)

z2 + 2z − 3− r2√
(z + 1)2 − r2

1
(z + 1)2 − r2

dr

≤
∫

(z,r)∈Z1(ε,z)

1√
(z + 1)2 − r2

dr

≤ π

2
for all z ∈ [1,∞) .

Finally, ∫
(z,r)∈Z1(ε,z)

dr
1

((z − 1)2 − r2)
√

(z + 1)2 − r2

×
∣∣∣∣(1− z2 + r2)F

(
− 1

2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
+ 2(z − 1)F

(1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣
≤ C for all z ∈ [1,∞) .

In the second zone we have

ε ≤ (z − 1)2 − r2

(z + 1)2 − r2
≤ 1 =⇒ 1

(z − 1)2 − r2
≤ 1
ε[(z + 1)2 − r2]

. (7.13)

According to the formula 15.3.10 of [3, Ch.15] the hypergeometric functions obey the estimates∣∣∣∣F(− 1
2
,
1
2
; 1;x

)∣∣∣∣ ≤ C and
∣∣∣∣F(1

2
,
1
2
; 1;x

)∣∣∣∣ ≤ C
(
1− ln(1− x)) for all x ∈ [ε, 1) . (7.14)

This allows to prove the estimate for the integral over the second zone∫
(z,r)∈Z2(ε,z)

dr
1

((z − 1)2 − r2)
√

(z + 1)2 − r2

×
∣∣∣∣(1− z2 + r2)F

(
− 1

2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
+ 2(z − 1)F

(1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣
≤ C for all z ∈ [1,∞) . (7.15)

Indeed, for the argument of the hypergeometric functions we have

ε ≤ (z − 1)2 − r2

(z + 1)2 − r2
= 1− 4z

(z + 1)2 − r2
< 1,

4z
(z + 1)2 − r2

< 1− ε for all (z, r) ∈ Z2(ε, z) .

Hence,∣∣∣∣F(1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣ ≤ C

(
1− ln

4z
(z + 1)2 − r2

)
≤ C (1 + ln z) for all (z, r) ∈ Z2(ε, z). (7.16)

To prove (7.15) we have to estimate the following two integrals

A4 :=
∫

(z,r)∈Z2(ε,z)

1
((z − 1)2 − r2)

√
(z + 1)2 − r2

∣∣(1− z2 + r2)
∣∣ dr ,

A5 :=
∫

(z,r)∈Z2(ε,z)

1
((z − 1)2 − r2)

√
(z + 1)2 − r2

|(z − 1) (1 + ln z)| dr .

We apply (7.13) to A4 and obtain

A4 ≤ Cε

∫
(z,r)∈Z2(ε,z)

1√
(z + 1)2 − r2

dr ≤ Cε

∫ z−1

0

1√
(z + 1)2 − r2

dr ≤ Cε ,
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while

A5 ≤ Cε(z − 1) (1 + ln z)
∫

(z,r)∈Z2(ε,z)

1
((z + 1)2 − r2)

√
(z + 1)2 − r2

dr

≤ Cε(z − 1) (1 + ln z)
∫ z−1

0

1
((z + 1)2 − r2)3/2

dr

≤ Cε(z − 1)2 (1 + ln z)
1√

z(z + 1)2

≤ Cε (1 + ln z)
1√
z
.

Thus, (7.15) is proven. Lemma is proven. �

8 Some Estimates of the Kernels K0 and K1. Lp − Lq Decay Esti-
mates for Equation with n = 1 and without Source Term

Theorem 8.1 Let u = u(x, t) be a solution of the Cauchy problem

utt − e2tuxx = 0 , u(x, 0) = ϕ0(x) , ut(x, 0) = ϕ1(x) ,

with ϕ0, ϕ1 ∈ C∞0 (R). If ρ ∈ (1, 2), then

‖u(x, t)‖Lq(Rx) ≤ e−
t
2 ‖ϕ0(x)‖Lq(Rx) + Cρ(et − 1)

1
ρ e−t‖ϕ0(x)‖Lp(Rx)

+C(1 + t)(et − 1)
1
ρ−1(1− e−t)‖ϕ1(x)‖Lp(Rx) ,

for all t ∈ (0,∞). Here 1 < p < ρ′, 1
q = 1

p −
1
ρ′ ,

1
ρ + 1

ρ′ = 1. If ρ = 1, then

‖u(x, t)‖Lq(R) ≤ C
(
‖ϕ0(x)‖Lq(R) + (1 + t)‖ϕ1(x)‖Lq(R)

)
for all t ∈ (0,∞). (8.1)

For ρ = 1 we apply Proposition 7.3. To prove this theorem for ρ 6= 1 we need some auxiliary estimates
for the kernels K0 and K1. We start with the case of ϕ0 = 0, where the kernel K1 appears. The application
of Theorem 0.4 and Young’s inequality lead to

‖u(x, t)‖Lq(Rx) ≤ 2

(∫ et−1

0

|K1(x, t)|ρdx

)1/ρ

‖ϕ(x)‖Lp(Rx),

where 1 < p < ρ′, 1
q = 1

p −
1
ρ′ ,

1
ρ + 1

ρ′ = 1. Now we have to estimate the integral
(∫ et−1

0
|K1(x, t)|ρdx

)1/ρ

.

Proposition 8.2 We have(∫ et−1

0

|K1(x, t)|ρdx

)1/ρ

≤ C(1 + t)(et − 1)1/ρ−1(1− e−t) for all t ∈ (0,∞) .

Proof. One can write(∫ et−1

0

|K1(x, t)|ρdx

)1/ρ

≤

(∫ et−1

0

∣∣∣∣∣ 1√
(1 + et)2 − x2

F
(1

2
,
1
2
; 1;

(et − 1)2 − x2

(et + 1)2 − x2

)∣∣∣∣∣
ρ

dx

)1/ρ

.

Denote z := et > 1 and consider the first integral
∫ z−1

0

∣∣∣∣∣ 1√
(1 + z)2 − x2

F
(1

2
,
1
2
; 1;

(z − 1)2 − x2

(z + 1)2 − x2

)∣∣∣∣∣
ρ

dx of

the right-hand side. According to Lemma 7.2 we obtain that for all z > 1 the following estimate∫ z−1

0

∣∣∣∣∣ 1√
(1 + z)2 − x2

F
(1

2
,
1
2
; 1;

(z − 1)2 − x2

(z + 1)2 − x2

)∣∣∣∣∣
ρ

dx ≤ C(1 + ln z)ρ(z − 1)(z + 1)−ρF
(1

2
,
ρ

2
;
3
2
;
(z − 1)2

(z + 1)2
)
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is fulfilled, provided that 1 < p < ρ′, 1
q = 1

p −
1
ρ′ ,

1
ρ + 1

ρ′ = 1. In particular, if ρ < 2, then

(∫ z−1

0

((z + 1)2 − r2)−
ρ
2F
(1

2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)ρ

dr

)1/ρ

≤ C(1 + ln z)(z − 1)1/ρ(z + 1)−1 .

Proposition is proven. �
Thus, the theorem in the case of ϕ0 = 0 is proven.

Now we turn to the case of ϕ1 = 0, where the kernel K0 appears. The application of Theorem 0.4 leads to

‖u(x, t)‖Lq(Rx) ≤ e−
t
2 ‖ϕ0(x)‖Lq(Rx) +

∥∥∥∥∥
∫ et−1

0

[ϕ0(x− z) + ϕ0(x+ z)]K0(z, t) dz

∥∥∥∥∥
Lq(Rx)

.

Similarly to the case of the second datum we arrive at

‖u(x, t)‖Lq(Rx) ≤ e−
t
2 ‖ϕ0(x)‖Lq(Rx) + ‖ϕ0(x)‖Lp(Rx)

(∫ et−1

0

|K0(r, t)|ρdr

)1/ρ

.

The next proposition gives an estimate for the integral
(∫ et−1

0
|K0(r, t)|ρdr

)1/ρ

.

Proposition 8.3 Let 1 < p < ρ′, 1
q = 1

p −
1
ρ′ ,

1
ρ + 1

ρ′ = 1, and ρ ∈ [1, 2). We have

(∫ et−1

0

|K0(r, t)|ρdr

)1/ρ

≤ Cρ(et − 1)
1
ρ (et + 1)−1 for all t ∈ (0,∞) .

Proof. We turn to the integral (z = et > 1)

I2 :=

(∫ z−1

0

∣∣∣∣∣ 1
((z − 1)2 − r2)

√
(z + 1)2 − r2

∣∣∣∣∣
ρ

×
∣∣∣∣(1− z2 + r2)F

(
− 1

2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
+ 2(z − 1)F

(1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣ρ dr)1/ρ

.

The formula (3.11) describes the behavior of those functions at the neighbourhood of zero. Hence, if ε > 0
is small, the for all z and r such that (7.8) holds, one has (7.9). Consider therefore two zones, Z1(ε, z) and
Z2(ε, z), defined in (7.10) and (7.11), respectively. We split integral into two parts:∫ et−1

0

|K0(r, t)|ρ dr =
∫

(z,r)∈Z1(ε,z)

|K0(r, t)|ρ dr +
∫

(z,r)∈Z2(ε,z)

|K0(r, t)|ρ dr .

In the proof of Lemma 7.4 the relation (7.12) was checked in the first zone. If 1 ≤ z ≤M with some constant
M , then the argument of the hypergeometric functions is bounded,

(z − 1)2 − r2

(z + 1)2 − r2
≤ CM < 1 for all r ∈ (0, z − 1), (8.2)

and we obtain (∫ z−1

0

|K0(r, t)|ρ dr
)1/ρ

≤ C

(∫ z−1

0

∣∣∣∣∣ 1√
(z + 1)2 − r2

∣∣∣∣∣
ρ

dr

)1/ρ

≤ C

(
(z − 1)(z + 1)−ρF

(1
2
,
ρ

2
;
3
2
;
(z − 1)2

(z + 1)2
))1/ρ

≤ C(z − 1)1/ρ(z + 1)−1 .

Thus, we can restrict ourselves to the case of large z ≥M in both zones.
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Consider therefore for ρ ∈ (1, 2) the integrals over the first zone

A6 :=
∫

(z,r)∈Z1(ε,z)

∣∣∣∣∣ 1√
(z + 1)2 − r2

∣∣∣∣∣
ρ

dr ≤
∫ z−1

0

∣∣∣∣∣ 1√
(z + 1)2 − r2

∣∣∣∣∣
ρ

dr

≤ C(z − 1)(z + 1)−ρF
(1

2
,
ρ

2
;
3
2
;
(z − 1)2

(z + 1)2
)

≤ C(z − 1)(z + 1)−ρ

and

A7 :=
∫

(z,r)∈Z1(ε,z)

∣∣∣∣∣ 1
((z − 1)2 − r2)

√
(z + 1)2 − r2

(
z2 + 2z − 3− r2

)( (z − 1)2 − r2

(z + 1)2 − r2

)2
∣∣∣∣∣
ρ

dr

≤
∫ z−1

0

∣∣∣∣∣ 1√
(z + 1)2 − r2

∣∣∣∣∣
ρ

dr

≤ C(z − 1)(z + 1)−ρ .

In the second zone for the argument of the hypergeometric functions we have

ε ≤ (z − 1)2 − r2

(z + 1)2 − r2
= 1− 4z

(z + 1)2 − r2
< 1,

4z
(z + 1)2 − r2

< 1− ε for all (z, r) ∈ Z2(ε, z) ,

and
1

(z − 1)2 − r2
≤ 1
ε[(z + 1)2 − r2]

, 0 ≤ r ≤ z − 1 .

Hence,∣∣∣∣F(1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣ ≤ C

(
1− ln

4z
(z + 1)2 − r2

)
≤ C (1 + ln z) for all (z, r) ∈ Z2(ε, z).

We have to estimate the following two integrals

A8 :=
∫

(z,r)∈Z2(ε,z)

∣∣∣∣∣ 1
((z − 1)2 − r2)

√
(z + 1)2 − r2

(z2 − 1− r2)

∣∣∣∣∣
ρ

dr ,

A9 :=
∫

(z,r)∈Z2(ε,z)

∣∣∣∣∣ 1
((z − 1)2 − r2)

√
(z + 1)2 − r2

(z − 1) (1 + ln z)

∣∣∣∣∣
ρ

dr .

We apply (7.13) and obtain

A8 ≤
∫

(z,r)∈Z2(ε,z)

∣∣∣∣∣ 1
((z + 1)2 − r2)

√
(z + 1)2 − r2

(z2 − 1− r2)

∣∣∣∣∣
ρ

dr

≤
∫ z−1

0

∣∣∣∣∣ 1√
(z + 1)2 − r2

∣∣∣∣∣
ρ

dr

≤ C(z − 1)(z + 1)−ρF
(1

2
,
ρ

2
;
3
2
;
(z − 1)2

(z + 1)2
)

≤ C(z − 1)(z + 1)−ρ ,

while

A9 ≤ Cε(z − 1)ρ (1 + ln z)ρ
∫

(z,r)∈Z2(ε,z)

((z + 1)2 − r2)−3ρ/2dr

≤ Cε(z − 1)ρ (1 + ln z)ρ (z − 1)(z + 1)−3ρF
(1

2
,
3ρ
2

;
3
2
;
(z − 1)2

(z + 1)2
)

≤ C(z − 1)(z + 1)−ρ .

The proposition is proven. �
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9 Lp − Lq Decay Estimates for the Equation with Source, n > 1

For the wave equation the Duhamel’s principle allows to reduce the case of source term to the case of
the Cauchy problem without source term and consequently to derive the Lp − Lq-decay estimates for the
equation. For (0.6) the Duhamel’s principle is not applicable straightforward and we have to appeal to the
representation formula of Theorem 0.5. In fact, one can regard that formula as an expansion of the two-stage
Duhamel’s principle. In this section we consider the Cauchy problem (0.17) for the equation with the source
term with zero initial data.

Theorem 9.1 Let u = u(x, t) be solution of the Cauchy problem (0.17). Then for n > 1 one has the
following decay estimate

‖(−4)−su(x, t)‖Lq(Rn)

≤ C

∫ t

0

‖f(x, b)‖Lp(Rn)db

∫ et−eb

0

dr r2s−n( 1
p−

1
q ) 1√

(et + eb)2 − r2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − r2

(et + eb)2 − r2

)

provided that s ≥ 0, 1 < p ≤ 2, 1
p + 1

q = 1, 1
2 (n+ 1)

(
1
p −

1
q

)
≤ 2s ≤ n

(
1
p −

1
q

)
, −1 + n

(
1
p −

1
q

)
< 2s.

Proof. According to the representation (0.20) and to the results of [4, 16] for the wave equation, we have

‖(−4)−su(x, t)‖Lq(Rn)

≤ C

∫ t

0

db

∫ et−eb

0

‖(−4)−sv(x, r; b)‖Lq(Rn)
1√

(et + eb)2 − r2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − r2

(et + eb)2 − r2

)
dr

≤ C

∫ t

0

db ‖f(x, b)‖Lp(Rn)

∫ et−eb

0

r2s−n( 1
p−

1
q ) 1√

(et + eb)2 − r2
F

(
1
2
,
1
2
; 1;

(et − eb)2 − r2

(et + eb)2 − r2

)
dr .

The theorem is proven. �
We are going to transform the estimate of the last theorem to more cosy form. To this aim we estimate

for 2s− n( 1
p −

1
q ) > −1 the last integral of the right hand side. If we replace et/eb > 1 with z > 1, then the

integral will be simplified.

Lemma 9.2 Assume that 0 ≥ 2s− n( 1
p −

1
q ) > −1. Then∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
F

(
1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
dr ≤ Cz−1(z − 1)1+2s−n( 1

p−
1
q )(1 + ln z),

for all z > 1.

Proof. If 1 < z ≤M with some constant M , then the argument of the hypergeometric functions is bounded,
see (8.2), and ∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
F

(
1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
dr

≤ CM (z − 1)1+2s−n( 1
p−

1
q ), for all 1 < z ≤M .

Hence, we can restrict ourselves to the case of large z, that is z ≥ M . In particular, we choose M > 6 and
split integral into two parts:∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
F

(
1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
dr

=
∫ √(z+1)2−8z

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
F

(
1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)
dr

+
∫ z−1

√
(z+1)2−8z

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
F

(
1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)
dr .
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For the second part we have (7.1) and z ≥M > 6, then (7.2) and (7.3) imply∫ z−1

√
(z+1)2−8z

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
F

(
1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)
dr

≤ C

∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
dr

≤ C(1 + z)2s−n( 1
p−

1
q ) for all z ≥M > 6 .

For the first integral r ≤
√

(z + 1)2 − 8z and z ≥M > 6 imply 8z ≤ (z + 1)2 − r2. It follows∣∣∣∣∣F
(

1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)∣∣∣∣∣ ≤ C

∣∣∣∣∣ln
(

4z
(z + 1)2 − r2

)∣∣∣∣∣ ≤ C(1 + ln z) .

Then we obtain ∫ √(z+1)2−8z

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
F

(
1
2
,
1
2
; 1; 1− 4z

(z + 1)2 − r2

)
dr

≤ C(1 + ln z)
∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
dr

≤ C(1 + ln z)(1 + z)2s−n( 1
p−

1
q ) .

Lemma is proven. �

Corollary 9.3 Let u = u(x, t) be solution of the Cauchy problem (0.17). Then for n > 1 one has the
following decay estimate

‖(−4)−su(x, t)‖Lq(Rn) ≤ Cet
(
2s−n( 1

p−
1
q )
) ∫ t

0

‖f(x, b)‖Lp(Rn)(1 + t− b) db (9.1)

provided that s ≥ 0, 1 < p ≤ 2, 1
p + 1

q = 1, 1
2 (n+ 1)

(
1
p −

1
q

)
≤ 2s ≤ n

(
1
p −

1
q

)
, −1 + n

(
1
p −

1
q

)
< 2s.

Proof. Indeed, from Theorem 9.1 we derive

‖(−4)−su(x, t)‖Lq(Rn) ≤ C

∫ t

0

‖f(x, b)‖Lp(Rn)e
b(2s−n( 1

p−
1
q ))db

×
∫ et−b−1

0

dl
l2s−n( 1

p−
1
q )√

(et−b + 1)2 − r2
F

(
1
2
,
1
2
; 1;

(et−b − 1)2 − l2

(et−b + 1)2 − l2

)
.

Next we apply Lemma 9.2 with z = et−b and arrive at (9.1). Corollary is proven. �

10 Lp−Lq Decay Estimates for the Equation without Source, n > 1

The Lp − Lq-decay estimates for the energy of the solution of the Cauchy problem for the wave equation
without source can be proved by the representation formula, L1 − L∞ and L2 − L2 estimates, interpolation
argument. (See, e.g., [18, Theorem 2.1].) There is also a proof of the Lp−Lq-decay estimates for the solution
itself, that is based on the microlocal consideration and dyadic decomposition of the phase space. (See, e.g.,
[4, 16].) The last one was applied in [9, 10] to the equation (0.6) and its result is given by (0.8) that contains
some loss of regularity. The application of the first approach includes the step with the Granwall inequality
that brings some inaccuracy in the result. To avoid the loss of regularity and obtain more sharp estimates
we appeal to the representation formula provided by Theorem 0.6.

Theorem 10.1 The solution u = u(x, t) of the Cauchy problem (0.21) satisfies the following Lp−Lq estimate

‖(−4)−su(x, t)‖Lq(Rn) ≤ C(et − 1)2s−n( 1
p−

1
q )
{
‖ϕ0(x)‖Lp(Rn) + ‖ϕ1‖Lp(Rn)(1 + t)(1− e−t)

}
for all t ∈ (0,∞), provided that s ≥ 0, 1 < p ≤ 2, 1

p + 1
q = 1, 1

2 (n + 1)
(

1
p −

1
q

)
≤ 2s ≤ n

(
1
p −

1
q

)
,

−1 + n
(

1
p −

1
q

)
< 2s.
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Proof. We start with the case of ϕ0 = 0. Due to Theorem 0.6 for the solution u = u(x, t) of the Cauchy
problem (0.21) with ϕ0 = 0 and to the results of [4, 16] we have:

‖(−4)−su(x, t)‖Lq(Rn) ≤ C‖ϕ1‖Lp(Rn)

∫ et−1

0

r2s−n( 1
p−

1
q ) |K1(r, t)| dr .

To continue we need the following lemma.

Lemma 10.2 The following inequality holds∫ z−1

0

r2s−n( 1
p−

1
q ) |K1(r, t)| dr ≤ C(1 + ln z)z−1(z − 1)1+2s−n( 1

p−
1
q ) for all z > 1.

Proof. In fact, we have to estimate the integral:

I3 :=
∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
F
(1

2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
dr ,

where z = et. The estimate for I3 is given by Lemma 9.2. Thus, for the case of ϕ0 = 0 the theorem is
proven.

Next we turn to the case of ϕ1 = 0. Due to Theorem 0.6 for the solution u = u(x, t) of the Cauchy
problem (0.21) with ϕ1 = 0 and to the results of [4, 16] we have:

‖(−4)−su(x, t)‖Lq(Rn)

≤ Ce−
t
2 (et − 1)2s−n( 1

p−
1
q )‖ϕ0(x)‖Lp(Rn) + C‖ϕ0(x)‖Lp(Rn)

∫ et−1

0

r2s−n( 1
p−

1
q )|K0(r, t)| dr.

The following proposition gives the remaining estimate for the last integral,
∫ z−1

0
r2s−n( 1

p−
1
q )|K0(r, t)| dr,

and completes the proof of the theorem.

Proposition 10.3 If 2s− n( 1
p −

1
q ) > −1, then∫ z−1

0

r2s−n( 1
p−

1
q )|K0(r, t)| dr ≤ Cz−1(z − 1)1+2s−n( 1

p−
1
q ) for all z > 1.

Proof. We follow the arguments have been used in the proof of Proposition 8.3. If 1 ≤ z ≤ M with some
constant M , then the argument of the hypergeometric functions is bounded (8.2), and we have∫ z−1

0

r2s−n( 1
p−

1
q ) |K0(r, t)| dr ≤ C

∫ z−1

0

1√
(z + 1)2 − r2

r2s−n( 1
p−

1
q )dr

≤ CM (z − 1)1+2s−n( 1
p−

1
q ), 1 < z ≤M .

Thus, we can restrict ourselves to the case of large z ≥ M in both zones Z1(ε, z) and Z2(ε, z), defined in
(7.10) and (7.11), respectively. In the first zone we have (7.12). Consider therefore the following inequalities,

A10 :=
∫

(z,r)∈Z1(ε,z)

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
dr

≤ C

∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
dr

≤ Cz2s−n( 1
p−

1
q ) for all z ∈ [1,∞) ,

A11 :=
∫

(z,r)∈Z1(ε,z)

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2

∣∣3− z2 − 2z + r2
∣∣

(z + 1)2 − r2
dr

≤ C

∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
dr

≤ Cz2s−n( 1
p−

1
q ) for all z ∈ [1,∞) ,
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and

A12 :=
∫

(z,r)∈Z1(ε,z)

r2s−n( 1
p−

1
q ) 1

((z − 1)2 − r2)
√

(z + 1)2 − r2

(
(z − 1)2 − r2

(z + 1)2 − r2

)2

dr

≤
∫

(z,r)∈Z1(ε,z)

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
1

(z + 1)2 − r2
dr

≤
∫

(z,r)∈Z1(ε,z)

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
1
4z
dr

≤ Cz2s−n( 1
p−

1
q )−1 for all z ∈ [1,∞) .

Finally, ∫
(z,r)∈Z1(ε,z)

dr
1

((z − 1)2 − r2)
√

(z + 1)2 − r2
r2s−n( 1

p−
1
q )

×
∣∣∣∣(1− z2 + r2)F

(
− 1

2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)
+ 2(z − 1)F

(1
2
,
1
2
; 1;

(z − 1)2 − r2

(z + 1)2 − r2

)∣∣∣∣
≤ Cz2s−n( 1

p−
1
q ) for all z ∈ [1,∞) .

In the second zone we use (7.13), (7.14), and (7.16). Thus, we have to estimate the next two integrals:

A13 :=
∫

(z,r)∈Z2(ε,z)

r2s−n( 1
p−

1
q ) 1

((z − 1)2 − r2)
√

(z + 1)2 − r2

∣∣(1− z2 + r2)
∣∣ dr ,

A14 :=
∫

(z,r)∈Z2(ε,z)

r2s−n( 1
p−

1
q ) 1

((z − 1)2 − r2)
√

(z + 1)2 − r2
|(z − 1) (1 + ln z)| dr .

We apply (7.13) to A13 and obtain

A13 ≤ Cε

∫
(z,r)∈Z2(ε,z)

r2s−n( 1
p−

1
q ) 1

[(z + 1)2 − r2]
1√

(z + 1)2 − r2

∣∣z2 − 1− r2
∣∣ dr

≤ Cε

∫ z−1

0

r2s−n( 1
p−

1
q ) 1√

(z + 1)2 − r2
dr

≤ Cεz
2s−n( 1

p−
1
q ) for all z ∈ [1,∞) ,

while

A14 ≤ (z − 1) (1 + ln z)
∫

(z,r)∈Z2(ε,z)

r2s−n( 1
p−

1
q ) 1

((z − 1)2 − r2)
√

(z + 1)2 − r2
dr

≤ Cε(z − 1) (1 + ln z)
∫ z−1

0

r2s−n( 1
p−

1
q ) 1

((z + 1)2 − r2)3/2
dr .

For 0 ≥ a > −1 and z ≥M the following integral can be easily estimated:∫ z−1

0

ra 1
((z + 1)2 − r2)3/2

dr

=
∫ z/2

0

ra 1
((z + 1)2 − r2)3/2

dr +
∫ z−1

z/2

ra 1
((z + 1)2 − r2)3/2

dr

≤ 16
9

∫ z/2

0

raz−3dr +
za

4a

∫ z−1

z/2

1
((z + 1)2 − r2)3/2

dr

≤ Cz−3+a+1rdr + Cza−3/2

≤ Cza−3/2 .

Then A14 ≤ Cε(z − 1) (1 + ln z) za−3/2 ≤ Cεz
a. The proposition is proven. �
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[5] M. Brozos-Vázquez, E. Garćıa-Ŕıo, and R. Vázquez-Lorenzo, Locally conformally flat multidimensional
cosmological models and generalized Friedmann-Robertson-Walker spacetimes, J. Cosmol. Astropart.
Phys. JCAP12(2004)008 doi:10.1088/1475-7516/2004/12/008.

[6] W. De Sitter, On Einstein’s Theory of Gravitation, and its astronomical consequences.II,III. Royal
Astronimcal Society. 77 (1917) 155-184; 78 (1917) 3-28.

[7] A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsber Preuss.
Akad. Wiss. Berlin (1917) 142-152.

[8] H. Friedrich, A. Rendall, The Cauchy problem for the Einstein equations. Einstein’s field equations and
their physical implications. Lecture Notes in Phys., 540, Springer, Berlin (2000) 127–223.

[9] A. Galstian, Lp−Lq decay estimates for the equation with exponentionally growing coefficient, Preprint
2001/24, ISSN 1437-739X, Institut fr Mathematik, Uni Potsdam, 2001.

[10] A. Galstian, Lp-Lq decay estimates for the wave equations with exponentially growing speed of propa-
gation. Appl. Anal. 82 (3) (2003) 197–214.

[11] J. M. Heinzle, A. Rendall, Power-law inflation in spacetimes without symmetry. Commun. Math. Phys.
269 (2007) 1-15.
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