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1 Introduction

The earliest model for chemosensitive movement has been developed by Keller and Segel
[1,2,3], which we call it as KS model. Assume that in absence of any external signal the
spread of a population u(t, x) is described by the diffusion equation

ut = d∆u, (1)

where d > 0 is the diffusion constant. We define the net flux as j = −d∇u. If there is
some external signal s, we just assume that it results in a chemotactic velocity β. Then
the flux is

j = −d∇u + βu. (2)

To be more specific, we assume that the chemotactic velocity β has the direction of the
gradient∇s and that the sensitivity χ to the gradient depends on the signal concentration
s(t, x), then β = χ(s)∇s .

We use this modified flux in (2) to obtain the parabolic chemotaxis equation

ut = ∇(d∇u− χ(s)∇s · u). (3)

If χ(s) is positive, which means that the chemotactic velocity is in direction of s, we
call it positive bias, whereas χ < 0 is called negative bias.

To our general knowledge, the external signal is produced by the individuals and
decays, which is described by a nonlinear function g(s, u). We assume that the spatial
spread of the external signal is driven by diffusion. Then the full system for u and s
reads

∗Research supported by the NSFC
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ut = ∇(d∇u− χ(s)∇s · u), (4)

τst = d∆s + g(s, u), (5)

the time constant 0 ≤ τ ≤ 1 indicates that the spatial spread of the organisms u and
the signal s are on different time scales. The case τ = 0 corresponds to a quasi-steady
state assumption for the signal distribution. When we assume that the spatial spread of
external signal is driven by wave motion, then the equation (5) would be replaced by

stt = d∆s + g(s, u). (6)

The full system for u and s becomes

ut = ∇(d∇u− χ(s)∇s · u), (7)

stt = d∆s + g(s, u), (8)

which is called as hyperbolic-parabolic chemotaxis system.

2 Main Results

Let us consider the following problem:

ut = ∇(∇u− χu∇v) in (0, T )× Ω,
vtt = ∆v + g(u, v) in (0, T )× Ω,
∂u
∂n = ∂v

∂n = 0, on (0, T )× ∂Ω,

(9)

with initial data

u(0, ·) = u0, v(0, ·) = ϕ, vt(0, ·) = ψ in Ω,

where Ω ⊂ Rn, a bounded open domain with smooth boundary ∂Ω, χ is a nonnegative
constant.

Choose a constant σ, which satisfies

1 < σ < 2 (10)

and

n < 2σ < n + 2 (11)

It is easy to check that (10) and (11) can be simultaneously satisfied in the case of
1 ≤ n ≤ 3.

Our main results are

Theorem 4.1. Under the conditions (10) and (11), if g(u, v) = −γv + f(u) and f ∈
C2(R), then for each initial data u0 ∈ Hσ(Ω) ∩ {∂u

∂n = 0 on ∂Ω}, ϕ ∈ H2(Ω) ∩ { ∂v
∂n =

0 on ∂Ω}, ψ ∈ H1(Ω), the problem (9) has a unique local solution (u, v) ∈ Xt0 × Yt0 for
some t0 > 0.
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Theorem 5.1. Let n = 1 and σ = 5
4 , if g(u, v) = −γv + f(u) and f ∈ C2

0 (R), then

for each initial data u0 ∈ Hσ(Ω) ∩ {∂u
∂n = 0 on ∂Ω} and u0 ≥ 0, ϕ ∈ H2(Ω) ∩ { ∂v

∂n =
0 on ∂Ω} and ψ ∈ H1(Ω), the problem (9) has a unique global solution (u, v) ∈ X∞×Y∞.

Where we define

Xt0 = C([0, t0],Hσ(Ω) ∩ {∂u

∂n
= 0 on ∂Ω})

Yt0 = C([0, t0],H2(Ω) ∩ {∂v

∂n
= 0 on ∂Ω}) ∩ C1([0, t0],H1(Ω))

3 Some Basic Lemmas

For g(u, v) = −γv + f(u), and γ is a constant, f(x) ∈ C2(R). We divide the system (9)
into two pars:





ut = ∇(∇u− χu∇v) in (0, T )× Ω
∂u
∂n = 0 on (0, T )× ∂Ω
u(0, ·) = u0 in Ω,

(12)

and




vtt = ∆v − γv + f(u) in (0, T )× Ω
∂v
∂n = 0 on (0, T )× ∂Ω
v(0, ·) = ϕ, vt(0, ·) = ψ in Ω.

(13)

We have

Lemma 3.1. For any T > 0, and

ϕ ∈ H2(Ω) ∩ {∂u

∂n
= 0 on ∂Ω}, ψ ∈ H1(Ω), f(u(t, .)) ∈ C([0, T ];H1(Ω)),

then (13) has a unique solution v, satisfying

v ∈ C([0, T ];H2(Ω) ∩ {∂v

∂n
= 0 on ∂Ω}), vt ∈ C([0, T ];H1(Ω)), vtt ∈ C([0, T ];L2(Ω)),

and

‖v(t, ·)‖H2(Ω) + ‖vt(t, ·)‖H1(Ω) ≤ ecT (‖ϕ‖H2(Ω) + ‖ψ‖H1(Ω)

+
∫ T
0 ‖f(u(τ, ·))‖H1(Ω) dτ), ∀ t ∈ [0, T ],

(14)

where c > 0 is a constant which is independent of T .

Proof: Set vt = w, we have following system
{

vt = w,
wt = 4v − γv + f(u).

(15)

Thus we can write it in a abstract form:
{

Ut = LU + F (U) in X = H1(Ω)× L2(Ω),
U0 = U(0, x) = (ϕ,ψ),

(16)
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where L(v, w) = (w,4v−v) for (v, w) ∈ D(L), D(L) = H2(Ω)∩{ ∂v
∂n = 0 on ∂Ω}×H1(Ω)

and F (v, w) = (0, (1− γ)v + f(u)).
Define the inner product in X as

< (v, w), (v′, w′) >X= (v, v′)H1 + (w, w′)L2 ,

where (·, ·)H1 and (·, ·)L2 represent the inner products in H1 and L2 respectively, then X
is a Hilbert space.

For U = (v, w) ∈ D(L), we have

< LU,U >X=< (w,4v − v), (v, w) >X

= (w, v)H1 + (4v − v, w)L2

= (w, v)H1 + (4v, w)L2 − (v, w)L2

= (w, v)H1 − (∇v,∇w)L2 − (v, w)L2

= 0

(17)

Otherwise, for U = (v, w) ∈ D(L), U ′ = (v′, w′) ∈ X,

< L(v, w), (v′, w′) >X

=< (w,4v − v), (v′, w′) >X

= (w, v′)H1 + (4v − v, w′)L2

= (w, v′)H1 + (4v, w′)L2 − (v, w′)L2

(18)

If < L(v, w), (v′, w′) >X is bounded for each (v, w) ∈ D(L), then (w, v′)H1 , (4v, w′)L2

and (v, w′)L2 are bounded for each (v, w) ∈ D(L), which means that

v′ ∈ H2 ∩ {∂v

∂n
= 0 on ∂Ω}, w′ ∈ H1, (19)

that implies D(L∗) ⊂ D(L). On the other hand, from (17) and the lemma in [6, p9], we
know that

L∗ = −L.

Thus we know that L is a generator of a unitary operator group. It is easy to check that
for f(u(t, ·)) ∈ C([0, T ],H1(Ω)),

F : X → X,

and
‖F (U1)− F (U2)‖X ≤ c ‖U1 − U2‖X Ui ∈ X, i = 1, 2,

where ‖(v, w)‖2
X = ‖v‖2

H1 + ‖w‖2
L2 .

Now we can declare that (16) has a unique solution

U ∈ C1([0, T ], X) ∩ C([0, T ], D(L)) for each U0 ∈ D(L), (20)

which means that for each (ϕ,ψ) ∈ D(L), (13) has a unique solution

v ∈ C([0, T ],H2(Ω)∩{∂v

∂n
= 0 on ∂Ω}), vt ∈ C([0, T ],H1(Ω)) and vtt ∈ C([0, T ], L2(Ω)).

Next, we estimate the norm of v. By using the semigroup notation T (t) = etL, we
have

U = T (t)U0 +
∫ t

0
T (t− s)F (U)ds. (21)
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Since L = −L∗, and in terms of (17), we have that

< LU,U >X= 0 for each U ∈ D((L),

and
< L∗U,U >X=< −LU,U >X= 0 for each U ∈ D(L).

Hence L generates a strongly continuous contractive semigroup on Hilbert space X
(cf. [4, 5]), in other words, we have

∥∥∥etL
∥∥∥ = ‖T (t)‖ ≤ 1. (22)

So we know that

‖U(t)‖H2×H1 ≤ ‖T (t)U0‖H2×H1 +
∫ t
0 ‖T (t− s)F (U(s))‖H2×H1 ds

≤ ‖U0‖H2×H1 +
∫ t
0 ‖F (U)‖H2×H1 ds

= ‖ϕ‖H2 + ‖ψ‖H1 +
∫ t
0 ‖(1− γ)v + f(u)‖H1ds

≤ ‖ϕ‖H2 + ‖ψ‖H1 + c
∫ t
0 ‖v‖H1ds +

∫ t
0 ‖f(u)‖H1ds

≤ ‖ϕ‖H2 + ‖ψ‖H1 + c
∫ t
0 ‖U‖H2×H1ds +

∫ T
0 ‖f(u)‖H1ds, 0 ≤ t ≤ T.

(23)

From Gronwall’s inequality, we know that

‖U‖H2×H1 ≤ ect(‖ϕ‖H2 + ‖ψ‖H1 +
∫ T
0 ‖f(u)‖H1ds)

≤ ecT (‖ϕ‖H2 + ‖ψ‖H1 +
∫ T
0 ‖f(u)‖H1ds),

0 ≤ t ≤ T, (24)

which implies the estimate (14) and the uniqueness follows.
If Ω is a bounded open domain with smooth boundary, in which we can consider

the Neumann boundary condition. As we known that the et4 defines a holomorphic
semigroup on the Hilbert space L2(Ω), so we have that

f ∈ L2(Ω) ⇒
∥∥∥et4f

∥∥∥
H2(Ω)

≤ c

t
‖f‖L2(Ω) , (25)

where D(∆) = {u ∈ H2(Ω), ∂u
∂n = 0 on ∂Ω}.

Applying interpolation to (25), it yields
∥∥∥et4f

∥∥∥
Hσ(Ω)

≤ ct−
σ
2 ‖f‖L2(Ω) for 0 ≤ σ ≤ 2, 0 < t ≤ 1. (26)

Take Y = Hσ(Ω) ∩ {∂u
∂n = 0 on ∂Ω} and Z = L2(Ω), Φ(u) = −χ∇v∇u − χ∆v · u.

Then For v ∈ Yt0 , and from the lemma in [4, p273], we can declare that

Lemma 3.2. For each u0 ∈ Y and v ∈ Yt0 , σ and n satisfy the conditions (10) and (11),
then the problem (12) has a unique solution

u ∈ Xt0 = C([0, t0],Hσ(Ω) ∩ {∂u

∂n
= 0 on ∂Ω}).

Proof: If we can show that Φ : Y → Z is a locally Lipschitz map, then the lemma
3.2 is true. In fact, for arbitrary u1, u2 ∈ Y and v ∈ Yt0 , the difference

Φ(u1)− Φ(u2) = −χ∇v∇(u1 − u2)− χ4v · (u1 − u2).
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That is
‖Φ(u1)− Φ(u2)‖Z = ‖Φ(u1)− Φ(u2)‖L2

≤ ‖χ∇v∇(u1 − u2)‖L2 + ‖χ4v · (u1 − u2)‖L2 .

By Sobolev imbedding theorems, we have

H1(Ω) ↪→ L∞(Ω), for n = 1,

H1(Ω) ↪→ Lq(Ω), 1 < q < ∞, for n = 2,

H1(Ω) ↪→ L
2n

n−2 (Ω), for n = 3.

Thus in terms of (10) and (11), we know that H1(Ω) ↪→ L
n

σ−1 (Ω) and Hσ−1(Ω) ↪→
L

2n
n−2(σ−1) (Ω) for n = 2, 3.

Firstly we estimate ‖χ∇v∇(u1 − u2)‖L2 . If n = 1, then

‖χ∇v∇(u1 − u2)‖L2

≤ χ ‖∇(u1 − u2)‖L2 ‖∇v‖L∞
≤ c ‖u1 − u2‖H1 ‖∇v‖H1

≤ c ‖u1 − u2‖Hσ ‖v‖H2 .

If n = 2, 3, then
‖χ∇v∇(u1 − u2)‖L2

≤ χ ‖∇(u1 − u2)‖
L

2n
n−2(σ−1)

‖∇v‖
L

n
σ−1

≤ c ‖u1 − u2‖Hσ ‖v‖H2 .

Hence for n = 1, 2, 3, we have that

‖χ∇v∇(u1 − u2)‖L2 ≤ c ‖u1 − u2‖Hσ ‖v‖H2 .

Similarly, we have
‖χ4v · (u1 − u2)‖L2

≤ c ‖v‖H2 ‖u1 − u2‖L∞

≤ c ‖u1 − u2‖Hσ ‖v‖H2 .

Thus we have proved that

‖Φ(u1)− Φ(u2)‖Z ≤ c ‖u1 − u2‖Y ‖v‖H2 ,

as required.

Lemma 3.3. Under the conditions (10) and (11), if u ∈ Xt0 is a solution of (12), the
there exists a constant c which is independent of t0, such that

‖u‖Xt0
≤ c ‖u0‖σ,2 + ct

1−σ
2

0 ‖v‖Yt0
· ‖u‖Xt0

, (27)

where ‖·‖k,p is the norm of Sobolev space W k,p.

Proof: Let T (t) = et∆, then
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u(t) = T (t)u0 − χ

∫ t

0
T (t− s)∇v∇uds−χ

∫ t

0
T (t− s)∆v · uds.

By (26), we have T (t) : L2(Ω) → Hσ(Ω) with norm cσt−
σ
2 . Thus

∥∥∥∥
∫ t

0
T (t− s)∇v∇uds

∥∥∥∥
σ,2
≤ cσt1−

σ
2 sup

0≤s≤t
‖∇v(s, ·)∇u(s, ·)‖2

where we use ‖·‖p as the norm of Lp.
By Sobolev imbedding theorem, H1(Ω) ↪→ L∞(Ω) for n = 1, we have

‖∇v∇u‖2 ≤ ‖∇v‖∞ · ‖∇u‖2

≤ c ‖v‖2,2 · ‖u‖1,2

≤ c ‖v‖2,2 · ‖u‖σ,2 .

For n = 2, 3, we have H1(Ω) ↪→ L
n

σ−1 (Ω), Hσ−1(Ω) ↪→ L
2n

n−2(σ−1) (Ω), thus f2 ∈
L

n
2(σ−1) , g2 ∈ L

n
n−2(σ−1) if f ∈ H1 and g ∈ Hσ−1. By using Cauchy inequality, we get

∥∥∥f2g2
∥∥∥
1
≤

∥∥∥f2
∥∥∥

n
2(σ−1)

·
∥∥∥g2

∥∥∥
n

n−2(σ−1)

which implies ‖fg‖2 ≤ ‖f‖ n
σ−1

· ‖g‖ 2n
n−2(σ−1)

. Thus

‖∇v∇u‖2 ≤ ‖∇v‖ n
σ−1

· ‖∇u‖ 2n
n−2(σ−1)

≤ c ‖∇v‖1,2 · ‖∇u‖ 2n
n−2(σ−1)

≤ c ‖v‖2,2 · ‖∇u‖σ−1,2 ≤ c ‖v‖2,2 · ‖u‖σ,2 .

Now we obtain that, for 0 ≤ t ≤ t0,
∥∥∥
∫ t
0 τ(t− s)∇v∇uds

∥∥∥
σ,2
≤ cσt1−

σ
2 sup0≤s≤t ‖∇v∇u‖2

≤ Ct1−
σ
2 sup0≤s≤t ‖v‖2,2 · ‖u‖σ,2 ≤ Ct

1−σ
2

0 ‖u‖Xt0
· ‖v‖Yt0

.

Meanwhile ∥∥∥
∫ t
0 T (t− s)∆v · u

∥∥∥
σ,2

≤ cσt1−
σ
2 sup0≤s≤t ‖∆v · u‖2

≤ cσt
1−σ

2
0 sup0≤s≤t0 ‖u‖L∞ · ‖∆v‖L2

≤ Ct
1−σ

2
0 sup0≤s≤t0 ‖u‖σ,2 · sup0≤s≤t0 ‖v‖2,2

≤ Ct
1−σ

2
0 ‖u‖Xt0

· ‖v‖Yt0
.

Finally we can deduce that

‖u(t)‖σ,2 ≤ ‖T (t)u0‖σ,2 + χ
∥∥∥
∫ t
0 T (t− s)∇v∇uds

∥∥∥
σ,2

+χ
∥∥∥
∫ t
0 T (t− s)∆v · uds

∥∥∥
σ,2

≤ C ‖u0‖σ,2 + χccσt
1−σ

2
0 ‖u‖Xt0

· ‖v‖Yt0
, 0 ≤ t ≤ t0,

which implies
‖u‖Xt0

≤ C ‖u0‖σ,2 + Ct
1−σ

2
0 ‖u‖Xt0

‖v‖Yt0
.

Lemma 3.3 is proved.
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4 Local Existence of Solutions

In this section, we establish the local solution of the system (9). Our main result is as
follows:

Theorem 4.1. If σ and n satisfy the conditions (10) and (11), g(u, v) = −γv+f(u) and
f ∈ C2(R), then for each initial data u0 ∈ Hσ(Ω)∩{∂u

∂n = 0 on ∂Ω}, ϕ ∈ H2(Ω)∩{ ∂v
∂n =

0 on ∂Ω}, ψ ∈ H1(Ω), the problem (9) has a unique local solution (u, v) ∈ Xt0 × Yt0 for
some t0 > 0.

Proof: Consider w ∈ Xt0 , w(0, x) = u0(x) and let v = v(w) denote the corresponding
solution of the equation:

vtt = ∆v − γv + f(w) in (0, t0)× Ω,
∂v
∂n = 0 on (0, t0)× ∂Ω,
v(0) = ϕ in Ω,
vt(0) = ψ in Ω.

(28)

By Lemma 3.1, we have v ∈ Yt0 , and

‖v(t)‖H2(Ω) ≤ ec1t0(‖ϕ‖H2(Ω) + ‖ψ‖H1(Ω)

+
∫ t0
0 ‖f(w(τ, ·))‖H1(Ω)dτ), ∀ t ∈ [0, t0].

(29)

Secondly, for the solution v of (28), we define u = u(v(w)) to be the corresponding
solution of

ut = ∇(∇u− χu∇v) in (0, t0)× Ω,
∂u
∂n = 0 on (0, t0)× ∂Ω,
u(0, x) = u0(x) = w(0, x) in Ω.

(30)

If we define Gw = u(v(w)), then Lemma 3.2 shows that

G : Xt0 → Xt0 .

Take M = 2c ‖u0‖σ,2 and a ball

BM =
{
w ∈ Xt0 | w(0, x) = u0(x), ‖w(t, ·)‖σ,2 ≤ M, 0 ≤ t ≤ t0

}
,

where the constant c ≥ 1 is given by (27). Then we combine the estimates (27) and (29)
to obtain

‖Gw‖Xt0
≤ c ‖u0‖σ,2 + ct

1−σ
2

0 ‖v‖Yt0
· ‖Gw‖Xt0

≤ c ‖u0‖σ,2 + ct
1−σ

2
0 ec1t0(‖ϕ‖H2 + ‖ψ‖H1

+
∫ t0
0 ‖f(w(τ, ·))‖H1dτ) · ‖Gw‖Xt0

.

Since ‖w‖1,2 ≤ ‖w‖σ,2 ≤ M , and f ∈ C2(R), we can deduce that

‖f(w(τ, ·))‖1,2 ≤ ‖f‖C2[−M,M ] ·M + ‖f(0)‖L2 ,

which shows that ‖Gw‖Xt0
≤ 2c ‖u0‖σ,2 for t0 > 0 small enough.
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Thus we have proved that, for t0 > 0 small enough, G maps BM into BM . Next, we
can prove that, for t0 small enough, G is a contract mapping. In fact, let w1, w2 ∈ Xu,
and v1, v2 denote the corresponding solutions of (28). Then the difference Gw1 − Gw2

satisfies:

Gg1 −Gg2 = u1 − u2

= −χ
∫ t
0 T (t− s)u1∆v1ds−χ

∫ t
0 T (t− s)∇u1∇v1ds

+χ
∫ t
0 T (t− s)u2∇v2ds + χ

∫ t
0 T (t− s)∇u2∇v2ds

= −χ
∫ t
0 T (t− s)(u1∆v1 − u2∆v2)ds−χ

∫ t
0 T (t− s)(∇u1∇v1 −∇u2∇v2)ds.

Next, we have
∥∥∥
∫ t
0 T (t− s)(u1∆v1 − u2∆v2)ds

∥∥∥
σ,2

≤
∥∥∥
∫ t
0 T (t− s)u1(∆v1 −∆v2)ds

∥∥∥
σ,2

+
∥∥∥
∫ t
0 T (t− s)(u1 − u2)∆v2ds

∥∥∥
σ,2

.

Since ∥∥∥
∫ t
0 T (t− s)u1(∆v1 −∆v2)ds

∥∥∥
σ,2

≤ ct
1−σ

2
0 sup0≤t≤t0 ‖u1(∆v1 −∆v2)‖2

≤ ct
1−σ

2
0 sup0≤t≤t0 ‖u1‖L∞ · ‖∆(v1 − v2)‖2

≤ CMt
1−σ

2
0 sup0≤t≤t0 ‖v1 − v2‖2,2 ,

(31)

and ∥∥∥
∫ t
0 T (t− s)(u1 − u2)∆v2ds

∥∥∥
σ,2

≤ ct
1−σ

2
0 sup0≤t≤t0 ‖(u1 − u2)∆v2‖2

≤ ct
1−σ

2
0 sup0≤t≤t0 ‖v2‖2,2 · ‖u1 − u2‖L∞

≤ ct
1−σ

2
0 ‖v2‖Yt0

· ‖u1 − u2‖Xt0
.

(32)

Thus we have that
∥∥∥
∫ t
0 T (t− s)(u1∆v1 − u2∆v2)ds

∥∥∥
σ,2

≤ Ct
1−σ

2
0 ‖v1 − v2‖Yt0

+Ct
1−σ

2
0 ‖v2‖Yt0

· ‖u1 − u2‖Xt0
, 0 ≤ t ≤ t0.

(33)

Similarly, we have
∥∥∥
∫ t
0 T (t− s)(∇u1∇v1 −∇u2∇v2)ds

∥∥∥
σ,2

≤
∥∥∥
∫ t
0 T (t− s)(∇u1∇v1 −∇u2∇v1)ds

∥∥∥
σ,2

+
∥∥∥
∫ t
0 T (t− s)(∇u2∇v1 −∇u2∇v2)ds

∥∥∥
σ,2

.

Here ∥∥∥
∫ t
0 T (t− s)(∇u1∇v1 −∇u2∇v1)ds

∥∥∥
σ,2

≤ ct
1−σ

2
0 sup0≤t≤t0 ‖∇v1 · ∇(u1 − u2)‖2 , 0 ≤ t ≤ t0.
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As we have done in Lemma 3.3, we can deduce that
∥∥∥
∫ t
0 T (t− s)(∇u1∇v1 −∇u2∇v1)ds

∥∥∥
σ,2

≤ Ct
1−σ

2
0 ‖v1‖Yt0

· ‖u1 − u2‖Xt0
, 0 ≤ t ≤ t0.

(34)

And we have similarly that
∥∥∥
∫ t
0 T (t− s)(∇u2∇v1 −∇u2∇v2)ds

∥∥∥
σ,2

≤ ct
1−σ

2
0 sup0≤t≤t0 ‖∇u2 · ∇(v1 − v2)‖2

≤ ct
1−σ

2
0 ‖u2‖Xt0

· ‖v1 − v2‖Yt0

≤ cMt
1−σ

2
0 ‖v1 − v2‖Yt0

, 0 ≤ t ≤ t0.

(35)

Then
∥∥∥
∫ t
0 T (t− s)(∇u1∇v1 −∇u2∇v2)ds

∥∥∥
σ,2

≤ Ct
1−σ

2
0 ‖v1‖Yt0

· ‖u1 − u2‖Xt0
+ Ct

1−σ
2

0 ‖v1 − v2‖Yt0
, 0 ≤ t ≤ t0.

(36)

Combining the estimates (33) and (36), we have

‖Gw1 −Gw2‖σ,2 = ‖u1 − u2‖σ,2

≤ Ct
1−σ

2
0 ‖v1 − v2‖Yt0

+ Ct
1−σ

2
0 ‖v2‖Yt0

· ‖u1 − u2‖Xt0

+Ct
1−σ

2
0 ‖v1‖Yt0

· ‖u1 − u2‖Xt0
+ Ct

1−σ
2

0 ‖v1 − v2‖Yt0
,

which implies

‖Gw1 −Gw2‖Xt0

≤ 2Ct
1−σ

2
0 ‖v1 − v2‖Yt0

+ Ct
1−σ

2
0 (‖v2‖Yt0

+ ‖v1‖Yt0
) · ‖Gw1 −Gw2‖Xt0

.

Also, we have

‖v1 − v2‖2,2 ≤ ec1t0
∫ t0
0 ‖f(w1)− f(w2)‖H1dτ

≤ ec1t0 ‖f‖C2[−M,M ]

∫ t0
0 ‖w1 − w2‖Hσdτ,

and
‖v1‖2,2 ≤ ec1t0(‖ϕ‖H2 + ‖ψ‖H1 +

∫ t0
0 ‖f(w1(τ))‖H1dτ)

≤ ec1t0(‖ϕ‖H2 + ‖ψ‖H1 + c
∫ t0
0 (‖w1(τ)‖Hσ + ‖f(0)‖H1)dτ)

≤ ec1t0(‖ϕ‖H2 + ‖ψ‖H1 + ct0(M + ‖f(0)‖L2))

‖v2‖2,2 ≤ ec1t0(‖ϕ‖H2 + ‖ψ‖H1 + ct0(M + ‖f(0)‖L2)).

Thus for t0 > 0 small enough, G is contract.
From process above, we have proved the existence of solution for the problem (9).

Since G is contract, then the solution is unique.
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5 Global existence of Solutions for n = 1

In this section, we establish the global existence and uniqueness of the solution (u, v) ∈
X∞ × Y∞ of (9) in the case of n = 1 and g(u, v) = −γv + f(u). Here we suppose that

f(x) ∈ C2
0 (R), σ =

5
4
. (37)

Observe that, for n = 1, σ = 5
4 can simultaneously satisfy the condition (10) and

(11). So from the result of Theorem 4.1, the problem (9) has a unique local solution
(u, v) ∈ Xt0 × Yt0 for some t0 > 0 small enough.

Actually we can obtain following more strong result:

Theorem 5.1. If n = 1, g(u, v) = −γv + f(u) and σ and f satisfy the condition (37),
then for each initial data u0 ∈ Hσ(Ω)∩{∂u

∂n = 0 on ∂Ω} and u0 ≥ 0, ϕ ∈ H2(Ω)∩{ ∂v
∂n =

0 on ∂Ω} and ψ ∈ H1(Ω), the problem (9) has a unique global solution (u, v) ∈ X∞×Y∞.

If u0 ≥ 0, then from the first equation of (9), we can deduce that the local solution
(u, v) satisfies

‖u(t, ·)‖L1 = ‖u0‖L1 (38)

Next, we have

Lemma 5.2. Let s ≤ 2, the local solution (u, v) ∈ Xt0 × Yt0 of (9), for g(u, v) =
−γv + f(u), satisfies

‖v(t, ·)‖Hs ≤ ect0(c0 +
∫ t0

0
‖f(u(τ, ·))‖Hs−1dτ), 0 ≤ t ≤ t0, (39)

where c0 = ‖ϕ‖H2 + ‖ψ‖H1 and c is independent of t0.
Proof: For U = (v, w) and F (U) = (0, (1 − γ)v + f(u)), in terms of (21), we know

that
U = T (t)U0 +

∫ t

0
T (t− τ)F (U(τ))dτ

where w = vt and (u, v) is the solution of (9).
By using (22), we know that

‖U(t)‖H1×L2 ≤ ‖T (t)U0‖H1×L2 +
∫ t
0 ‖T (t− τ)F (U(τ))‖H1×L2dτ

≤ ‖U0‖H1×L2 +
∫ t
0 ‖F (U(τ))‖H1×L2dτ

= ‖ϕ‖H1 + ‖ψ‖L2 +
∫ t
0 ‖(1− γ)v + f(u)‖L2dτ

≤ ‖ϕ‖H1 + ‖ψ‖L2 + c
∫ t
0 ‖v‖L2dτ +

∫ t
0 ‖f(u)‖L2dτ

≤ ‖ϕ‖H1 + ‖ψ‖L2 + c
∫ t
0 ‖U(τ)‖H1×L2dτ +

∫ t0
0 ‖f(u)‖L2dτ, 0 ≤ t ≤ t0.

(40)

So the Gronwall’s inequality indicates

‖U(t)‖H1×L2 ≤ ect(‖ϕ‖H1 + ‖ψ‖L2 +
∫ t0
0 ‖f(u)‖L2dτ)

≤ ect0(‖ϕ‖H2 + ‖ψ‖H1 +
∫ t0
0 ‖f(u)‖L2dτ), 0 ≤ t ≤ t0.

(41)
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Since Hs ×Hs−1 ⊂ H1 × L2 for s > 1, we denote T (t) |Hs×Hs−1 as the restriction of
T (t) on Hs ×Hs−1, the norm of T (t) |Hs×Hs−1 satisfies also the estimate (22). Thus, by
similar process of (40) and (41), we can deduce that

‖U(t)‖Hs×Hs−1 ≤ ect0(‖ϕ‖H2 + ‖ψ‖H1 +
∫ t0

0
‖f(u)‖Hs−1dτ), 0 ≤ t ≤ t0. (42)

If s < 1, then H1 × L2 ⊂ Hs × Hs−1, we use Hahn-Banach theorem to get that
the operator T (t) can be continuously extended on Hs ×Hs−1 and the norm of T (t) is
invariable. Thus for s < 1, we have also that

‖U(t)‖Hs×Hs−1 ≤ ect0(‖ϕ‖H2 + ‖ψ‖H1 +
∫ t0

0
‖f(u)‖Hs−1dτ), 0 ≤ t ≤ t0. (43)

Lemma 5.2 can be deduced directly by (41), (42) and (43).
Proof of theorem 5.1:
For the unique local solution (u, v) ∈ Xt0 × Yt0 of (9), if we take s=1/2 in (39), then

‖v(t, ·)‖2

H
1
2
≤ cet0(c0 +

∫ t0

0
‖f(u(τ, ·))‖2

H− 1
2
dτ), 0 ≤ t ≤ t0. (44)

Since n = 1, then from Sobolev imbedding theorems, we can deduce that W 0,1(Ω) ↪→
H− 1

2 (Ω). Hence we have

‖v(t, ·)‖2

H
1
2
≤ cet0(c0 +

∫ t0
0 ‖f(u(τ, ·))‖2

H− 1
2
dτ)

≤ cet0(c0 +
∫ t0
0 ‖f(u(τ, ·))‖2

L1dτ)
≤ cet0(c0 +

∫ t0
0 (M1 ‖u‖L1 + ‖f(0)‖L1)2dτ)

= cet0(c0 + t0(M1 ‖u0‖L1 + ‖f(0)‖L1)2), 0 ≤ t ≤ t0,

(45)

where M1 = ‖f‖C2 .
On the other hand, for each s ≤ σ and 0 ≤ σ0 < 2, we have that

‖u(t, ·)‖Hs ≤ c ‖u0‖Hσ + ct
1−σ0

2
0 ‖∇(u∇v)‖Hs−σ0

≤ c ‖u0‖Hσ + ct
1−σ0

2
0 ‖u∇v‖Hs−σ0+1 , 0 ≤ t ≤ t0,

(46)

Especially for s = −1
2 + 1

4 and σ0 = 2− 1
8 , we have

‖u(t, ·)‖
H− 1

2+1
4
≤ c ‖u0‖Hσ + ct

1
16
0 ‖u∇v‖

H−1− 1
8

, 0 ≤ t ≤ t0. (47)

By Sobolev imbedding theorems and (45),

‖u∇v‖
H−1− 1

8
≤ c ‖u‖

H−1− 1
8
· ‖∇v‖

W−1− 1
8 ,∞

≤ c ‖u‖H−1 · ‖∇v‖
H− 1

2

≤ c ‖u‖L1 · ‖v‖
H

1
2

≤ c ‖u0‖L1 · e 1
2
t0(c

1
2
0 + t

1
2
0 (M1 ‖u0‖L1 + ‖f(0)‖L1)), 0 ≤ t ≤ t0.

(48)

Thus

‖u(t, ·)‖
H− 1

4
≤ c ‖u0‖Hσ + ct

1
16
0 ‖u∇v‖

H−1− 1
8

≤ c ‖u0‖Hσ + ct
1
16
0 ‖u0‖L1 · e 1

2
t0(c

1
2
0 + t

1
2
0 (M1 ‖u0‖L1 + ‖f(0)‖L1)), 0 ≤ t ≤ t0.

(49)
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Take s = 1
2 + 1

4 = 3
4 in (39), then (39) and (49) give

‖v(t, ·)‖2

H
3
4
≤ cet0(c0 +

∫ t0
0 ‖f(u(τ, ·))‖2

H
3
4−1dτ)

≤ cet0(c0 + t0(M1 sup
0≤τ≤t0

‖u(τ, ·)‖
H− 1

4
+ ‖f(0)‖

H− 1
4
)2)

≤ cet0(c0 + t0(M1(c ‖u0‖Hσ + ct
1
16
0 ‖u0‖L1 · e 1

2
t0(c

1
2
0

+t
1
2
0 (M1 ‖u0‖L1 + ‖f(0)‖L1)) + ‖f(0)‖

H− 1
4
))2), 0 ≤ t ≤ t0.

(50)

Take s = −1
2 + 1

4 + 1
4 = 0 and σ0 = 2− 1

8 in (46) again, we obtain that

‖u(t, ·)‖L2 ≤ c ‖u0‖Hσ + ct
1−σ0

2
0 ‖∇(u∇v)‖H−σ0

≤ c ‖u0‖Hσ + ct
1
16
0 ‖u∇v‖H−σ0+1

≤ c ‖u0‖Hσ + ct
1
16
0 ‖u∇v‖

H−1+1
8

, 0 ≤ t ≤ t0.

(51)

Since we know that

‖u∇v‖
H−1+1

8
≤ c ‖u‖

H−1+1
8
· ‖∇v‖

W−1+1
8 ,∞

≤ c ‖u‖
H− 1

4
· ‖∇v‖

H− 1
2+1

4

≤ c ‖u‖
H− 1

4
· ‖v‖

H
3
4

, 0 ≤ t ≤ t0.

(52)

We can get that

‖u(t, ·)‖L2 ≤ c ‖u0‖Hσ + ct
1−σ0

2
0 ‖∇(u∇v)‖H−σ0

≤ c ‖u0‖Hσ + ct
1
16
0 ‖u∇v‖

H−1+1
8

≤ c ‖u0‖Hσ + ct
1
16
0 · ‖u‖

H− 1
4
· ‖v‖

H
3
4

, 0 ≤ t ≤ t0.

(53)

From (49) and (50), we have obtained that ‖u(t, ·)‖L2 grows by a bounded manner
in time.

Again we take s = 1
2 + 1

4 + 1
4 = 1 in (39), then (39) and (53) imply that ‖v(t, ·)‖H1

grows also by a bounded manner in time.
Taking s = −1

2 + 1
4 + 1

4 + 1
4 = 1

4 and σ0 = 2− 1
8 in (46) once more, since ‖v(t, ·)‖H1

grows by a bounded manner in time, similar to which we have done in (51), (52) and
(53), we can deduce that ‖u(t, ·)‖

H
1
4

grows by a bounded manner in time.
Let us repeat processes above four times, we can prove that ‖u(t, ·)‖

H
5
4

and ‖v(t, ·)‖H2

grow by a bounded manner in time, as required.
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