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1 Introduction

The earliest model for chemosensitive movement has been developed by Keller and Segel
[1,2,3], which we call it as KS model. Assume that in absence of any external signal the
spread of a population u(t,z) is described by the diffusion equation

Ut = ClAU, (1)

where d > 0 is the diffusion constant. We define the net flux as j = —dVu. If there is
some external signal s, we just assume that it results in a chemotactic velocity . Then
the flux is

Jj = —dVu + Bu. (2)

To be more specific, we assume that the chemotactic velocity 3 has the direction of the
gradient Vs and that the sensitivity x to the gradient depends on the signal concentration
s(t,z), then § = x(s)Vs .

We use this modified flux in (2) to obtain the parabolic chemotaxis equation

up = V(dVu — x(s)Vs - u). (3)

If x(s) is positive, which means that the chemotactic velocity is in direction of s, we
call it positive bias, whereas x < 0 is called negative bias.

To our general knowledge, the external signal is produced by the individuals and
decays, which is described by a nonlinear function g(s,u). We assume that the spatial
spread of the external signal is driven by diffusion. Then the full system for u and s
reads
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up = V(dVu — x(s)Vs - u), (4)

T8 = dAs + g(s,u), (5)

the time constant 0 < 7 < 1 indicates that the spatial spread of the organisms u and
the signal s are on different time scales. The case 7 = 0 corresponds to a quasi-steady
state assumption for the signal distribution. When we assume that the spatial spread of
external signal is driven by wave motion, then the equation (5) would be replaced by

s = dAs+ g(s,u). (6)

The full system for v and s becomes

up = V(dVu — x(s)Vs - u), (7)

Stt = dAs + g(S, U), (8)

which is called as hyperbolic-parabolic chemotaxis system.

2 Main Results

Let us consider the following problem:
ur = V(Vu —xuVo) in (0,T) x Q,

Vit = Av + g(u,v) in (OvT) X Qv (9)
%:%:0’ on (0,T) x 09,

with initial data
U(O, ) = uo, U(Oa ) =¥, Ut(0> ) = @ZJ m Q,

where 2 C R", a bounded open domain with smooth boundary 02, x is a nonnegative
constant.
Choose a constant o, which satisfies

l<o<2 (10)

and

n<20<n+2 (11)

It is easy to check that (10) and (11) can be simultaneously satisfied in the case of
1<n<3.
Our main results are

Theorem 4.1. Under the conditions (10) and (11), if g(u,v) = —yv + f(u) and f €
C?(R), then for each initial data ug € H?(Q) N {g—z =0 on 0Q}, ¢ € H*(Q) N {% =
0 on 00}, ¢ € HY(Q), the problem (9) has a unique local solution (u,v) € X;, x Yy, for
some ty > 0.



Theorem 5.1. Let n = 1 and o = 2, if g(u,v) = —yv + f(u) and f € CZ(R), then

for each initial data ugp € H?(£2) N {g—g =0 on 09} and uy > 0, p € H?(2) N {g—:; =

0 on 0Q} andv € H' (), the problem (9) has a unique global solution (u,v) € Xs X Yao.
Where we define

X, = C([0,t0], H° () N {gz =0 on 00})

0

Y;, = C([0,t0], H*(Q) N {a% =0 on 9Q})NCL0,t], H(Q))

3 Some Basic Lemmas

For g(u,v) = —yv + f(u), and « is a constant, f(z) € C?>(R). We divide the system (9)
into two pars:

up = V(Vu — xuVv) in (0,T) x Q
ou

g =0 on (0,T)x 09 (12)
U(O, ) =Up mn Q,

and
vy =Av—vv+ f(u) in (0,T) xQ
5 =0 on (0,T) x 99 (13)
v(0, ) =, v(0, )=1 in Q.

‘We have

Lemma 3.1. For any T > 0, and

p e HAQ) N {2 =000 00}, ¥ € H(Q), f(ult, ) € C(0.T) H' (),
then (13) has a unique solution v, satisfying
ve C(0,T]; H*(Q) N {Z% =00n 0Q}), v € C([0,T]; HY(Q)), v € C([0,T]; L*(Q)),
and

ot M) + ot Mgy < e el + 1¥lm @

(14)
+Jo 1F(u(r; Dl dr), Ve, T),
where ¢ > 0 is a constant which is independent of T.
Proof: Set v; = w, we have following system
Vg = W,
15
{wt:Av—*yv—&—f(u). (15)
Thus we can write it in a abstract form:
U=LU+FU) in X=HYQ) x L*(Q),
(16)
UO = U(O,Q?) = ((7071[)),



where L(v,w) = (w, Av—) for (v,w) € D(L), D(L) = HQ(Q)ﬂ{g—z =0o0n 0N} x HY(Q)
and F(o,w) = (0, (1— 7)o + f(u)).
Define the inner product in X as

< (Uv ’LU), (Ulvw/) >X= (Ua U/)Hl + (w7w/)L27

where (-, )1 and (-, )2 represent the inner products in H' and L? respectively, then X
is a Hilbert space.
For U = (v,w) € D(L), we have

< LU, U >x=< (w,A\v —v), (v,w) >x
= (w,v) 1 + (Av — v, w) 2

= (w7U)H1 =+ (AU, w)L2 - (Uv w)L2 (17)
= (w,v)in — (Vu,Vw)r2 — (v,w) 2
—0

Otherwise, for U = (v,w) € D(L), U = (v/,v') € X,

< L(v,w), (v, w'") >x

=< (w,Av —0), (v, w') >x

= (w,v") g1 + (Av — v, w') 2

= (w, ) g1 + (Av, w2 — (v,w') 2

(18)

If < L(v,w), (v/,w") >x is bounded for each (v, w) € D(L), then (w,v") g1, (Av,w’) 2
and (v,w’)r2 are bounded for each (v,w) € D(L), which means that

v e HQH{S—UZO on 09}, w € H', (19)
n

that implies D(L*) C D(L). On the other hand, from (17) and the lemma in [6, p9], we
know that
L*=—L.

Thus we know that L is a generator of a unitary operator group. It is easy to check that
for f(u(t,-)) € C([0,T], H'()),
F: X—X,

and
[F(U) = F(U2)|lx <cllUi = U2y Ui€eX, i=1,2,

2 2 2
where [|(v, w)[[ = [Jv[[z + [[wl]|Z2-
Now we can declare that (16) has a unique solution

UeC0,T),X)nC([0,T),D(L)) for each Uy € D(L), (20)

which means that for each (¢, %) € D(L), (13) has a unique solution

v e C([0,T), H*(Q) n{gz =00n N}), v € C([0,T), H(Q)) and vy € C([0,T], L*(Q)).

Next, we estimate the norm of v. By using the semigroup notation T'(t) = e'*, we

have

U =T, + /0 Tt — $)F(U)ds. (21)
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Since L = —L*, and in terms of (17), we have that
< LU, U >x=0 foreach U € D((L),
and
< L*U,U >x=< —LU,U >x=0 for each U € D(L).
Hence L generates a strongly continuous contractive semigroup on Hilbert space X
(cf. [4, 5]), in other words, we have

[ =Iren <. (22)

So we know that

IO 2wz < NT Vol 2 + Jo 1T = $)FU ()| 2 1 ds

< NUollgosar + Jo IF ) g2 1 ds

= llell gz + 19l + Jo | (1= 2o + f(u)l| g ds (23)
<Nl + 10l + o 10l ads + fo 1F ()l ds

<Nl + 10l +c J 10Ul g2gds + Jo 1)l gds, 0<t<T.

From Gronwall’s inequality, we know that

c T
HU’LIT{QXHI <e t(H‘PHH? + ﬂTﬁ”Hl + Jo IIf ()]l g ds) 0<t<T, (24)
< e ([l gz + 10l g + Jo Lf (W)l grds),

which implies the estimate (14) and the uniqueness follows.

If Q2 is a bounded open domain with smooth boundary, in which we can consider
the Neumann boundary condition. As we known that the e!® defines a holomorphic
semigroup on the Hilbert space L?(£2), so we have that

fe L¥Q) = Hemf‘

C
H2(0) <7 [FAIFRIOE (25)

where D(A) = {u € H*(Q), 9 =0 on 00}
Applying interpolation to (25), it yields

7]

woiy S Ml for0<o<2,0<t<1. (26)

Take Y = H?(2) N {% =0o0n 00} and Z = L*(Q), ®(u) = —xVvVu — xAv - u.
Then For v € Y}, and from the lemma in [4, p273], we can declare that

Lemma 3.2. For each up € Y and v € Y}, 0 and n satisfy the conditions (10) and (11),
then the problem (12) has a unique solution

u € Xy, = C([0,t0], H7(2) N {g—;‘ =0 on 9Q}).

Proof: If we can show that ® : Y — Z is a locally Lipschitz map, then the lemma
3.2 is true. In fact, for arbitrary ui, ug € Y and v € Y}, the difference

O(uy) — P(u2) = —xVoV(up —u2) — xAv - (ug — ua).



That is
[@(u1) — ®(u2)|l, = [[P(u1) — ®(u2)|l 2
< |IxVuV(ur —uz)llp2 + IxAv - (ur —u2)|lp2 -

By Sobolev imbedding theorems, we have
HY(Q) — L®(Q), for n=1,
HY Q) = LYQ), 1<qg<oo, for n=2,
HY(Q) — L2 (Q), for n=3.

Thus in terms of (10) and (11), we know that H'(Q) — Lﬁ(Q) and HO71(Q) —
2n
Ln=2c-1(Q) for n = 2,3.
Firstly we estimate ||[xVoV(u; —u2)|| 2. If n =1, then

IXVoV (ur —uz)ll 2

< x V(w1 = u2)l 2 [Vl oo
< cllur = ug|[ g1 Vol g
< cllur —uzllgo vl g2 -
If n = 2,3, then
IXVOV (u1 — uz)| 12

I s IVl 2

< cllur —uz|l go |0l g2 -

< x[[V(u1 = ug)

Hence for n = 1,2, 3, we have that
IXVoV (ur — ug)ll g2 < ¢llur — uallgo [l 52 -
Similarly, we have
IxAv - (u1 = u2)|l 2
< clvll g2 lur — w2l
< ¢ lur — wall o ol

Thus we have proved that

[@(u1) = D(uz)ll < cllur — ually [[oll g2,

as required.

Lemma 3.3. Under the conditions (10) and (11), if u € Xy, is a solution of (12), the
there exists a constant ¢ which is independent of ty, such that

1—2
lull, < ellwollya + ety 2 llelly, - lullx,, - (27)

where ||-[|, ,, is the norm of Sobolev space Wk,

Proof: Let T(t) = e'?, then



t t
u(t) = T(t)up — X/ T(t — s)VvVuds—X/ T(t — s)Av - uds.
0 0
By (26), we have T'(t) : L%(2) — H(Q) with norm ¢,t~2. Thus

< cot'™2 sup ||Vo(s, ) Vu(s, )|,
0,2 0<s<t

/ T(t — s)VuVuds

where we use [|-||,, as the norm of LP.
By Sobolev imbedding theorem, H*(Q) — L°°(Q) for n = 1, we have

IVoVully < [Vl - [[Vully
< cl[vllgg - llully 2
< cfollyg - llullyo-

n 2n
For n = 2,3, we have H'(Q) — L=-1(Q), H°1(Q) — L"=26-1(Q), thus f? €
L2G-1, g2 ¢ L»20-D if f € H' and g € H°~!'. By using Cauchy inequality, we get

|#267], < Hf2
2

n—2(c—1)

which implies | gl < Ifllc. - llg__zs_. Thus

HCUQUHQSHCU”LI [ Vull 2n
o— n—2(c—1)
< CU||1,2 ‘|

<c ”UHQ,Q ) ”VUHU 125¢ ||UH22 ||U”g,2-

Now we obtain that, for 0 < ¢ < ¢,

[Je(t = $)Vovuds| | < ept' 5 supoe,et VoVl

< Ot % supgeye [Vllos - ullan < Cty 2 llully, - olly,, -
Meanwhile
Hfo s)Av- UH 0.2
< Cot 2 Z SUPp<s<t [Av - ully
< Coto . ? SUpg<s<ty [ull o - |AV] 2
< Cto . SUPp<s<tg ||U||0—2 " SUPp<s<iy ||U”2,2
< Cty  Jlully,, ol -
Finally we can deduce that
la(®)l g2 < IT(Euolly o+ X | 5 T = 5) VoV uds
+Xx Hfo (t—s)Av- udsH

0,2

< C ol + xcCoty lullx,, - ||v||YtO7 0<t<to,

which implies

g
[ullx,, < Clluollgz +Cto * flullx, vl -

Lemma 3.3 is proved.



4 Local Existence of Solutions

In this section, we establish the local solution of the system (9). Our main result is as
follows:

Theorem 4.1. If o and n satisfy the conditions (10) and (11), g(u,v) = —yv+ f(u) and
f € C?(R), then for each initial data ug € H°(Q) ”{%Z =00n 9N}, p € H>(Q)N {%)L =
0 on 00}, ¢ € HY(Q), the problem (9) has a unique local solution (u,v) € X;, x Yy, for
some ty > 0.

Proof: Consider w € X;,, w(0,z) = up(z) and let v = v(w) denote the corresponding
solution of the equation:

vy = Av —yv + f(w) in (0,tg) x £,

g%; =0 on (0,t9) x 09, (28)
v(0) =¢ in Q,
v (0) =1 in Q.
By Lemma 3.1, we have v € Y}, and
ol 2y < € lell 2@ + 1¥1 o) (29)

+ o I (w(m Dl eydr), Yt € [0, o).

Secondly, for the solution v of (28), we define u = u(v(w)) to be the corresponding
solution of

ur = V(Vu — xuVv) in (0,%) x Q,
9u — () on (0,tp) x 0L, (30)

on

u(0,2) = up(z) = w(0,z) in Q.
If we define Gw = u(v(w)), then Lemma 3.2 shows that

G . Xto — Xto-
Take M = 2c||ug||, o and a ball
Bar = {w € Xi, [ w(0,2) = uo(@), [[w(t,)],, <M, 0<t <t}

where the constant ¢ > 1 is given by (27). Then we combine the estimates (27) and (29)
to obtain

1—¢2
IGuwlly,, < cluollys +cty 2 lolly,, - IGwlly,

1—a
< ¢luoll + cty e (ol 2 + 19l
+Jo" I (w(m Dl gpdr) - |Gwlx, -

Since [|[w|l; o < [Jwl[,o <M, and f € C?(R), we can deduce that

Lf Cw(ms Dl < W Fllez-aran - M+ 1FO) 2

which shows that ||GwHXt0 < 2c¢|lugl, 5 for to > 0 small enough.
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Thus we have proved that, for ty > 0 small enough, G maps Bj; into Bjs. Next, we
can prove that, for {3 small enough, G is a contract mapping. In fact, let wi, we € X,
and v, ve denote the corresponding solutions of (28). Then the difference Gw; — Gws
satisfies:

Gg1 — Ggz2 = u1 — up

= —x Jy T(t — s)ur Avids—x [y T(t — s)Vus Vuids

X Jo T(t — s)uaVuads + x [ T(t — 5)VuaVuads

= X Ji T(t — s)(u1Avy — ugAvg)ds—x [3 T(t — 8)(Vur Vvy — VuaVug)ds.

Next, we have

Hfo (t — s)(u1Avy — ugAwvy)ds H P
Hfo (t — s)ui(Avy — Avy) dSH + Hfo (t — s)(u1 — uz)Avods

0,2
Since
Hfo (t — s)up(Avy — Avg)ds )
0—7
= Cto Sup0<t<t0 [ur(Avy — Av)], (31)
< Cto Sup0<t<t0 Jutll oo - [A(v1 = v2)]]5
< CMtO SUPo<t<it, o1 — U2H2,27
and
Hfo (t — s)(u1 — ug)Avads s
< Cto SuP0§t§t0 [[(ur — uz)Ava, (32)
< Cto Sup0§t§to ‘ 2" Jur — u2ll 1o
1-2
<cty ?oally, - llur — welly,, -
Thus we have that
Hfot T(t — s)(u1Avy — ugAvg)ds
a
< Cto ”Ul - UQHYt (33)

+Cty ® [oally, - llur = uzllx, » 0 <t<to.
Similarly, we have
Hf(f (t — s)(Vui1Vuy — Vua Vo) dsH
Hfo (t —s)(Vu Vo — VUQV'Ul)dSH P
+ Hfo (t — s)(Vua Vs — Vua Vg dSH

Here
Hfo (t —s)(Vu1Voy — VuaVuy) dsH

< cto Sup0§t§t0 IVoy - V(ug — UQ)HQ, 0 <t<typ.



As we have done in Lemma 3.3, we can deduce that

Hfg T(t—s)(Vui Vuy — VuaVoy)ds

1¢ 9,2 (34)
<Ct, *? Hvl”yto ur — U2”Xt0 , 0<t <t

And we have similarly that

Hfg T(t — s)(VuaVu — VUQVUQ)CZSHUQ

1-Z
< ¢ty i SUPg<t<t, [Vug - V(vg —wa)l,

=3 (35)
<cty ? uzllx,, - llor = vally,
<Mty ? [l —vally, , 0<t<to.
Then
[Tt — s)(Vur Vg — VugVoy)ds
H 0 0,2 (36)

1-Z 1-¢
< Cty ?villy, -l —u2llx, +Cty 7 lor —wally, , 0<t<to.
Combining the estimates (33) and (36), we have

1Gw1 = Gualyp = [lur = uall 2
< Cty

o 1—2
“llor —vally, +Cty * lloally,, - llur = uallx,

1-Z 1—-2
+Cty * foilly,, - lur —wallx, +Cto * [lor —vally,
which implies
|Gwy — Gw2”Xt0
1—a 1—2
<20ty oy = vally, +Cty F (Jually,, + llly;, ) - [Geos — Gy, -
Also, we have
[v1 = wallgq < €t 5 |1 f (wr) — ft(w2)||H1dT
< e fllcziaran Jo° lwr — wa godr,

and
lorlla < e (el + 9l + J5° I1f (wn (7))l )
< 0|l + 61 + ¢ Jo? (w1 (7) g + 11 (0) 12 )dr)
< (gl + [l + cto(M +1£(0)]];2))

2l < e (llellgz + 10l o + cto(M + [[£(0)l2))-

Thus for ty > 0 small enough, G is contract.
From process above, we have proved the existence of solution for the problem (9).
Since G is contract, then the solution is unique.
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5 Global existence of Solutions for n =1

In this section, we establish the global existence and uniqueness of the solution (u,v) €
Xoo X Yoo of (9) in the case of n =1 and g(u,v) = —yv + f(u). Here we suppose that

f(@) € CER), o =7 (37)
Observe that, for n = 1, ¢ = 2 can simultaneously satisfy the condition (10) and
(11). So from the result of Theorem 4.1, the problem (9) has a unique local solution
(u,v) € Xy, x Yy, for some ty > 0 small enough.
Actually we can obtain following more strong result:

Theorem 5.1. If n =1, g(u,v) = —yv + f(u) and o and f satisfy the condition (37),
then for each initial data ug € H° () ﬂ{% =0 on 0Q}anduy >0, p € HQ(Q)H{%; =
0 on 9Q} and ¢ € H(Q), the problem (9) has a unique global solution (u,v) € Xoo X Yoo.

If up > 0, then from the first equation of (9), we can deduce that the local solution
(u,v) satisfies

[alt; ) = lluoll 2 (38)
Next, we have

Lemma 5.2. Let s < 2, the local solution (u,v) € Xy, x Yy, of (9), for g(u,v) =
—yv + f(u), satisfies

to
ot e < ™o+ [ I D), 0=t to (39)

where ¢o = ||¢|| 2 + [|¥|| 1 and ¢ is independent of t.
Proof: For U = (v,w) and F(U) = (0,(1 —y)v + f(u)), in terms of (21), we know
that

U= Tt)U + /Ot T(t — 7)F(U(7))dr

where w = v; and (u,v) is the solution of (9).
By using (22), we know that

IO g1 x> < ITOUl g1 g2 + Jo ITE = T)EU ) g1 247

< 0ol g1z + Jo IE(U )1 2

= llell g + 1902 + Jo (1 =)o + f(w)ll2dr (40)
<Nl + 1l 2 + ¢ fo vl odr + fo 1 ()]l p2dr

< lellgr + 19l g2 + e fo U g p2dr + fo° I1f ()l p2dr, 0 <t < to.

So the Gronwall’s inequality indicates

1Tz < e lellr + [Wllz2 + Jo° 1 (w)l]2dr) (11)
< e (lelgz + 190w + o° 1f W)l 2dr), 0 <t <to.
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Since H® x H*~' C H' x L? for s > 1, we denote T'(t) | sy g=—1 as the restriction of
T(t) on H® x H5~!, the norm of T'(t) | sy gs—1 satisfies also the estimate (22). Thus, by
similar process of (40) and (41), we can deduce that

to
U O] s prs— < €[l gz + 1911 +/O [f (W) prsrd7), 0 <t <Ao. (42)

If s < 1, then H' x L? C H® x H*!, we use Hahn-Banach theorem to get that
the operator T'(t) can be continuously extended on H® x H*~! and the norm of T'(t) is
invariable. Thus for s < 1, we have also that

to
1O O e prs—r < €l gz + 1911 +/0 [f (W) ge-2dT), 0<1<to. (43)

Lemma 5.2 can be deduced directly by (41), (42) and (43).
Proof of theorem 5.1:
For the unique local solution (u,v) € Xy, x Y3, of (9), if we take s=1/2 in (39), then

to
2 ¢ 2
ot )y < ce(eot [ FulnIE ydr), o<t <t (44)
Since n = 1, then from Sobolev imbedding theorems, we can deduce that W%1(Q) —
H_%(Q) Hence we have
lo(t. )7,y < ce®o(co + Jo° Lf (ulr, DI _y dr)
< CetO(Co + Jo 1 (u(r, )72 dr)

) ) (45)
< ce(co + fo* (M [[ullpr + [I£(0)]| 1)%dT)
= ce'®(co + to(M [[uoll 1 + [£(O)][1)%), 0 <t<to,
where M = || f]|c2-
On the other hand, for each s < o and 0 < gy < 2, we have that
Ju(t, ) gs < CHUOHHU ety ? V(Y0 e (46)
< c|luoll o + Cto Z uVoll gamegrr s 0 <t <ty
Especially for s = —% + % and op =2 — %, we have
1
Jut ), -141 < clluollge +ctg® [uVoll, 1, 0<t <t (47)
By Sobolev imbedding theorems and (45),
luvell Scllul\H_ NI
< cllullg-- [ Vol (18)
<clul -l
< clluolly - e3%0(cd + 83 (M Juoll s + [ FO)]1), 0 <t < to.
Thus
lult, ) -1 < CHUOHHU Tt HUWH 1 (19)

< ¢ uoll o + et [luolls - €30 (e + 13 (M1 [uollpx +[[F(O)ll 1)), 0 <t <to.
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Take s = 1 + 1 = 2 in (39), then (39) and (49) give

(e, I g < eeo(eo+ Jo° £ (ulr, )2 3 -1dr)
< celo(co+to(My sup [u(r, )| 1 +[IFO) _1)?)

O=T<to ! . (50)
< ce'(co + to(Mi(c |Juo |l o + ctg® |Juoll 1 - €30 (c2
1
43 (My [Juoll 1 + [ FO)]|) + 1 FO)] 1)), 0 <t <to.

Take s = —

_1
4

+1+1=0and og=2- 1 in (46) again, we obtain that

N[

1—20
lut, g2 < elluollge + ety * [IV(uVO)ll o0
< clluoll g + ctg® [uV o]l oo+ (51)
L
< clluollgo +ctg® Vol 1. 0<t<to.

Since we know that

Huvv”Hflﬁ'% <c HU”H71+§ ) HVUHW71+%,OO
<clll 419l oy (52)

< cllull -y ol 3, 0<t<to.
We can get that

1-20
lut, g2 < elluollge + ety * [IV(uVO)ll o0
< elluollgo + et [uVoll,_1ys (53)

1
< clluollgo + et -flull 3 -loll 3, 0<t<to.

From (49) and (50), we have obtained that ||u(t,-)| ;2 grows by a bounded manner
in time.

Again we take s =  + 1 + 1 = 1 in (39), then (39) and (53) imply that [[v(t, )|
grows also by a bounded manner in time.

Taking s = —3 + 4+ 1+ 1 = 1 and 09 = 2 — £ in (46) once more, since |[v(t,")|| ;1
grows by a bounded manner in time, similar to which we have done in (51), (52) and
(53), we can deduce that |ju(t, ')HHi grows by a bounded manner in time.

Let us repeat processes above four times, we can prove that ||u(, -) HH% and ||v(¢, )| g2

grow by a bounded manner in time, as required.
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