Yamabe constant (continued)



Yamabe constant of AF manifolds

* Let us have an AF manifold which satisfies R =
0. Further, we assume that it is conformally
flat outside a region of compact support. This
is NOT important, it is purely to simplify
things. We now conformally transform the
manifold so that it is flat outside some
coordinate radius r,. We know there exists a
positive function v satisfying 8Vy-Ry=0,y—1.



Yamabe constant

 This is the conformal factor that transforms us
back to the zero scalar curvature manifold.
Asymptotically, we know

. v=1+M/2r+....

* with M positive, because we know that the mass
of g’ = v*g (with g,.' = v*d,, near infinity) is
positive. We neither know nor care about the
interior. The positive energy theorem tells us that

R in general is negative, but we do not care about
it.



Yamabe constant

We want to get an upper bound for the
Yamabe constant. We use the following test

function
a1/2
E=Pv,r<r, &= r<r <O

(a2 +r2)1/2 ¢

where r’ > r,,.

We match 1 + M/2r with a2/(a? + r2)¥2 to
get

o? = 2r'3/M



Yamabe constant

e and P =a 31+ M/2r')3/2, We use the
conformal factor in the interior and the flat-
space Sobolev function in the exterior.

* We break the integral above the line into two
parts f f+fand we have

' f[( £ 41 8RE = ﬁf (Vo) +1/8Rv"Jdv =

0
/J’¢VVVdS+/)’f (1/8Rv- Vv)d



Yamabe constant

But we know that [/§Ry-V’y=( Therefore the
integral reduces to

r!

[=B>Pvvv.dS =PEVE.dS
0 r' r' ®
The other integral is fj[(Vg)2+1/8R§2]dV= f (Vi) d’x
= f [V.(uVu)-uV uld x = —¢ uVid§ +3 f i dy

rl

where we use that u minimizes the flat Sobolev
integral.



Yamabe constant

* When | add the two functions together the
surface integrals at r = r’ cancel because we
matched the functions and first derivatives at

r=r’. Therefore we get .
([(VE) +1/8RE |dv =3 f ubdy

0 r'

* | can explicitly perform the final integration to
get

[

0]

fu6deﬂ2/4—4ﬂ/3(}”'/a)3 =f[2/4—4ﬂ/3[M/2r']3/2

r



Yamabe constant

(This is in the limit where we pickr’' >> M, i.e.,
o >> r’. In this case we haveu(r<r)== a2 3
constant. Therefore we get f dv=a”[(4r /3],

exactly the correction aboveé.)
The denominator we simply estimate by

}56 dv > } E'dy = }u6dv.
0 . g

Thus we get



Yamabe constant

Y < 3[}u6dv]2/3 =3[n° 1 4-(4r /3)[M | 2r T .
* We immediately see that Y < 3w?/4 as long as M >
0, and the positive energy theorem gives us M =
O if and only if the 3-space is flat.

* This is not quite accurate. We cannot exactly
match u and v at any given finite radius. In
particular, we expect v to have dipole and higher
order corrections. However, these become less
and less important as we let r’ become large. We
can make this precise.



Positive energy

* |f we are given an asymptotically flat metric,
with positive Yamabe constant, we can solve

8V°9-Rp=0,0>0,¢ - late

* This is the Lichnerowicz equation. We can
rewrite it as  §V9-Rf=R,0- g0
* Thisis where we write p =1 + 0.



Brill Waves

* |[n 1959, essentially as his PhD thesis, Dieter
Brill published the first positive energy proof.
It was for axi-symmetric, moment-of-time-
symmetry data. He started off with a base
metric dS? = e?A9(dp? + dz?) + p?dB?, where q =
q(p, z) is a function which decays faster than
1/r at infinity, q = a,, = 0 along the z axis, and
A is a (positive) constant. We look for a
positive conformal factor ¢.



Brill waves

This goes to 1 at infinity. It must satisfy
8V°9-Rp =0

This requires that A be small’. This is what
guarantees that the Yamabe constant of the
manifold is positive. We can work out that

R - -ZAe_ZAq (qlpp + qIZZ)'
We also have that
g = p2e4Aq.



Brill waves

[Rav=[\[shd'x=-447 [ p(g,, +9.. )dpd:
=474 [1pg, -, 0. ). Mt
=0

M =~V gds, = (V9 g)ds,

= [[-916+(V9) 16" )dv=[1-RI8+(VO) 19}y = [[(V4)' /" )dv>0



Brill waves, 14

 What choices of g (or Ag) allow us to have an
everywhere positive ¢? It has to be small’.
More precisely, it must be small enough so

that the Yamabe constant of the metric must
be positive.

* |n particular, we can prove the following:



Brill waves, 15

Cantor and Brill:

There exists a positive ¢ going to 1 at infinity
such that g’_, = ¢*g,, has R’ =0 if and only if

[18VY+Ef*1dv>0

For all f of compact support (with f not
identically zero).

It turns out that we can find a condition for
this using the Sobolev constant.
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* We can show this using the Sobolev constant

[V Yav> Sl [ )"
* and the Holder inequality
[Rig)f v <[ 1R Y )"
o If [[IR(e)P?avI”® <8S(g) we can show that the
integral f [8(Vf)* +Rf*1dv is positive for every f
and so regular solutions to 8V2¢_R¢=0exist.



Brill waves, 17

The next thing that is interesting about Brill
waves is that if A is large (either positive or
negative) for any fixed g, a regular solution to

8V'9-Rp=0
cannot exist.

Let us define a positive function f, which has

support only where R is positive. We then
have
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J O Yav=2m [1,, ' 4(5, pdpd
Mg =428, 4.1t
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[1(, P 45, VIpdpd:
2f—(q,pp +,.)f pdpds

* Let me define 14

 If A<-|A_|, we cannot get a regular solution
to the Hamiltonian constraint. In a similar
way, we can define an A, and again we get no

regular solution.

* This is not just a mathematical game. We re
trying to map out conformal superspace’,
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* More precisely, we are trying to map out
“axially symmetric conformal superspace’. We
have q as defining a ‘direction’ in conformal
superspace, with A as the magnitude. If A is
either large and positive or large and negative
we emerge from the allowed region of
conformal superspace, and we no longer can
solve the conformal constraints.



