Hamiltonian systems, the initial
value constraints, and conserved
guantities in G.R.



Hamiltonian systems

G.R. is a Hamiltonian system
This was first realized by ADM in 1960

The key article was The Dynamics of General
Relativity’ by R. Arnowitt, S. Deser, and C. W.
Misner, in Gravitation: an introduction to
current research; Chapter 7, pp. 227 — 265;
Louis Witten (Ed.), Wiley (1962)
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Hamiltonian system

* The key idea was that the equations of GR
break up naturally into constraints’ and
‘dynamical’ equations. This is the famous '3 +
1’ system. The 3’ are the spacelike
constraints, the 1’ is the time’ propagation.

 We should not think of GR as a 4-equation’,
G =0, rather we should first solve’ the
constraints, and then evolve.



electromagnetism

 Constraints + evolution:
V.D'=0; V.B'=0
dElot =V X B: aB/8t=—YfXE

H/—/

V.D'= p;, VB =0
dE/0t=NXB-I, 0Blot=-VXE



Electromagnetism continued

* You only have to solve the constraints once!
VoB /ot = VVXE = 0

V.OE' /ot = VVXB = 0
* The expression div curl is automatically zero.



Back to GR

Three pieces
The constraints

The lapse and shift, N and N!, 4 degrees of
freedom

The evolution equations



The Constraints

The constraints:

We choose, essentially arbitrarily, a spacelike
3-slice through a 4 manifold.

We specify initial data on this 3-slice.
These data cannot be chosen freely.

We can pick E and B, but they must be both
divergence-free



The constraints, continued

The gravitational initial data consists of
(i) a spacelike 3-metric, g; and

(i) either the extrinsic curvature K or the
conjugate momentum ! of the 3-slice.

KV and zt are closely related.
We have mtl =g/2(Kil — g_ K30gl)
We write g, K® =K, g m?° =1



The constraints, continued

* We invert st =gl/2(Ki — g_, K3"g') to get

. Kil = g1/2(5gii — ¥ 7t gil)

* WARNING: This is not quite standard. Everybody
agrees with the definition of t’. However, there
IS @ minus-sign ambiguity in the definition of the
extrinsic curvature. The mathematicians all use
the definition given here. It was first made

popular by Wald. ADM, York, and many, but not
all of the numericists, use the opposite.



The constraints, continued

The constraints are:
g®R = mwig; — Vam?
or BIR = KIK;; — K2
and v.ol =0
or V.(KV-Kg")=0.
These equations do NOT depend on which

choice of K one makes. A source-field makes a
difference.



The constraints, still

* The non-vacuum constraints are

» BIR-KIK; + K2 = 167p , and

*V. (K —Kg') + 8xJi = 0.

 The second equation has a minus sign if one
uses the ‘other’ definition of KV.



Lapse and shift

We have 4 free functions, (N, N'), known as the
lapse and shift.

The are related to the 4-metric via
Wggo = (N;N°—N?), gy = Ny
g = 8
We define g™ as the inverse of g, and N° = gsN,
(4)800= _ (1/N2), (4)g0m — (Nm/NZ)
(4)gkm — (gkm _ NkNm/NZ)



Lapse and shift, again

Consider the 4-vector t* = (1, 0, 0, 0). This is
NOT a unit vector. The co-vectorist, =g, =
(g, ¥g,) = (NN, — N2, N.) so the dot
product is t*t, = N°N; — N°. Note that it is not
even guaranteed timelike.
The unit timelike normal co-vector is

n, = (-N, O, 0, 0).
The contravariant vector is

n* = [(1/N), - (N™/N]



aside

* Despite what people say, there is no need to
have N > 0. N can be negative, N can even be
zero in some regions. Nevertheless, it is usual

to have N positive, this means that we move
‘forward’ everywhere.



Lapse and shift

The "perpendicular connector’ vector is

(dt, - N™dt)
This has proper length
dt = N dt

This vector is along the normal.
tis, of course,=0if N =0.
f N*N; > N?, we have that t*t, > 0, which means

that t* is spacelike. If N is 'small’ and negative, t*
will be pointing ‘backwards’ but will be spacelike.




The dynamical equations

0g;/0t = 2Ng™/2(rt; — % g;; 8mnt™) + N + N,
Omll/dt = - Ng/2(R - % g R) + ¥4 NgV/2gi[n™r
— % (8nt™")?] = 2N[r'Mr;  — V2 7i(g,, t™")] +
g1/2 (N;ij — gij N;m;m) + (niij);m_ Ni;mﬂ:jm — Nj;mJ'Eim

Alternatively,
6gij/6t = 2N K; + N + N
Remember, we use the Wald convention



The dynamical equations, again

* OK;/ot = - N[R; — 2K, K# + Ki(g,,K™)] + N.;; -
NTKijim = KimN™; = K N™

 The dynamical equations preserve the
constraints, just as in Maxwell’s equations.
Therefore we can add any multiple of the
constraints to the dynamical equations and they

will still be valid.

* |n particular, the ADM dynamical equations are
NOT strongly hyperbolic. This has been a major
difficulty for the global analysis of GR.



The Constraints

* The constraints are (relatively) straightforward.
They can be written as a set of elliptic equations.

* The constraints are
BIR — KIK;; + (g,,K?")? = 0 (the Hamiltonian
constraint)
. K‘J';j — (g,,K3)' = 0.
* There are (apparently) two standard ways of

solving the constraints, the conformal method,
and the conformal thin sandwich method.




The Constraints

* These have recently been shown to be
identical by David Maxwell, 1402.5585 [gr-qc].

* | will therefore focus on the conformal
method. The idea is to select a metric, which
we will know up to a conformal factor, g';.. We
will also pick the TT (transverse-tracefree) part
of the extrinsic curvature, K''"; and the trace
of the extrinsic curvature, K.



Solving the constraints

We start off with a base-metric, Sii which we claim is
the conformally transformed’ physical metric, the
transverse-tracefree part of the extrinsic curvature,
K., and the trace of the extrinsic curvature, K.

We look for a vector, W!, or more precisely at the
conformal Killing form

VW, + VW, - 2/3Vkagij = (LW);
We assume that the solution metric is g; = ¢*g;; and
that the solution extrinsic curvature is
K’V = ¢10[KI + (LW)I] + K/3 ¢p4gl.
TT tensors are conformally covariant, in particular
¢ T1OKI1is TT wrt ¢g;.



Solving the constraints

Under a conformal transformation, g'; = ¢*g; the
scalar curvature transforms as

BIR’ = 4R — 8h~SV20).
We write K’;; = ¢(K™T; + [LW];) + K/3 ¢*g;
Therefore the Hamiltonian constraint becomes
8V2p — R + (KK + [LW]?)p™7 — 2/3K%d> = 0
While the momentum constraint becomes
V.LW + 2/3 ¢°VK = 0.



Solving the constraints

 There are some results about the 4 constraint
equations, however most of the results are
from the special cases of either maximal (K =
0) or CMC (constant mean curvature)(K =
constant) data. In each of these cases, the 4
constraint equations reduce to a single one,
the Hamiltonian constraint, because the
momentum constraint decouples.



Solving the constraints

The maximal constraint, K =0, is the simplest.
The constraints decouple and reduce to one
equation. The momentum constraint becomes
V.LW + 2/3 $*VK = 0.
Which implies
V.LW = 0.
This equation does NOT imply W' = 0. The data

may have a conformal Killing symmetry. But if we
have a conformal Killing vector, then LW = 0.



Solving the constraints

In this case, the Hamiltonian constraint
8V2¢p — R + (KK + [LW]?)p™7 — 2/3K%$> = 0
Reduces to
8V2p— R + KTTK ¢/ — 2/3K29> = 0
When we have CMC initial data, and to
8V2p— R + K"K ¢~/ =0
When we have maximal data.




Solving the constraints

* |[n the maximal case, the question is whether
we can control the sign of R. More precisely,
whether we can control the sign of R under a
conformal transformation.

 There is a subtle difference between the
‘asymptotically flat” and the compact without
boundary’ case.

e We need to know a number called the
Yamabe constant’.



Yamabe constant

inf [ ((VOT +1/8R9)dv

Y(g)=
9 [ f 9 dv]”?




Yamabe constant

The Yamabe constant is a conformal invariant.
It is easy to show this.

Given a conformal transformation with some
positive function ¢, with g’ = ¢*g,, and given
that the scalar curvature transforms as

BIR” = ¢p*R — 89> V20,
it is easy to show that (with 0" = 6/¢)
[IVO +1/8R'0™1dv' = [[(V6) +1/8R6"Jdy



Yamabe constant

And also f9'6dv'=f36 Adv

It immediately follows
Y(M,g’) =Y(M,g)

The function which minimizes the Yamabe
functional satisfies

-Vu+1/8Ru=Mt’
With A a constant.



Yamabe constant

* The relationship between | and Y is

Y = Al [ ubdv]"
* Further, the metric g’ = m*g satisfies
. R'= 8l
which is obviously constant. Finally, if we are
given a manifold with R = R, a constant, then
the minimizing equation is satisfied by u =
constant. In turn we get



Yamabe constant

Y =1/8R[[dv]* =1/8R,V"
M

 Therefore the sign of the Yamabe constant
determines, and is determined by, the sign of
the constant scalar curvature one can

conformally transform to. The magic number’
we need is

. 3(m2/4)%/3 .
* This is the Sobolev constant of flat space.



Yamabe constant

* The Sobolev constant is defined as

[ vy av
[f§6dV]1/3

* This is defined for asymptotically flat

manifolds and the infimum is evaluated over
functions of compact support.

* Let me stress that it equals 3(m2/4)?/3 for flat
space, and otherwise, while it is always
positive, it is less than this.

S =1nf




Yamabe constant

* Rick Schoen’s completion of the Yamabe theorem
showed that the Yamabe constant is strictly less
than 3(n2/4)?/3 for every compact manifold
without boundary (except S3 with constant scalar
curvature, and any conformal transform, when it
equals 3(rt2/4)%/3).

* The sign of the Yamabe constant is what really
matters in GR. Manifolds with positive Y can be
conformally transformed to metrics with positive
scalar curvature.



Solving the constraints

* If we wish to find a ‘'maximal’, i.e., a largest’ slice

in a compact manifold without boundary, we
have to solve

. 8V2) — R + KK ¢7 =0
* The solution metric must satisfy R’ = K"K’ =

¢ 12K"TK+ 2 0, so therefore the base metric must
have positive Yamabe constant. It turns out that
this is all we need. We can solve the ‘'maximal’
constraint if, and only if, the base metric has
positive Yamabe constant.



