
Random walks on Ramanujan digraphs and complexes

Ori Parzanchevski
Hebrew University of Jerusalem

Analysis and Geometry on Graphs and Manifolds, Potsdam 2017



Ramanujan Graphs

Adjacency operator of a graph: (Af ) (v) =
∑

w∼v f (w).

For a k-regular graph G ,

Spec (A) = −k ≤ λn ≤ . . . ≤ λ2 ≤ λ1 = k.

k is an eigenvalue of the constant eigenfunction.

−k ∈ Spec (A) iff G is bipartite.

G is a good expander if all eigenvalues except ±k are close to zero.

G is a Ramanujan graph if

Spec (A) ⊆ {−k} ∪
[
−2
√
k − 1, 2

√
k − 1

]
∪ {k} .

Optimal? For G = P2Fp (lines against planes in F3
p),

Spec (A) =
{
−k,−

√
k − 1,

√
k − 1, k

}
.

Alon-Boppana: For ε > 0, there are only finitely many k-regular graphs such that

Spec (A) ⊆ {−k} ∪
[
−2
√
k − 1 + ε, 2

√
k − 1−ε

]
∪ {k} .
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Ramanujan Graphs

Why 2
√
k − 1?

Every k-regular graph is a quotient of the k-regular tree Tk .

Kesten (’59):
Spec

(
ATk |L2(V )

)
=
[
−2
√
k − 1, 2

√
k − 1

]
.

Tk is the Cayley graph of Fk/2: the free group on k/2 generators.

Moreover (Kesten): if G = 〈S〉 and S = S−1 then

Spec
(
ACay(G ,S)

)
⊆
[
−2
√
k − 1, 2

√
k − 1

]
only if S freely generates G .

General Alon-Boppana Theorem (Serre, Grinberg, Grigorchuk-Żuk):
if Gn is an infinite family of quotients of G̃ then

lim
n
λ2 (Gn) ≥ λ2

(
G̃
)
.
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Ramanujan graphs

Existence? Kn is Ramanujan, but k = |Verts| − 1.

P2Fp is Ramanujan, but k ≈
√
|V |.

Lubotzky-Philips-Sarnak, Margulis: for k = prime + 1, there exist k-regular
Ramanujan graphs with |V | → ∞.

LPS: explicit construction as Cayley graphs of PGL2 (Fq), PSL2 (Fq).

-6 -4 -2 2 4 6

-0.1

-0.05

0.05

0.1

Adjacency spectrum of PGL2 (F13) with respect to ( 4 0
0 11 )

±1
, ( 1 2

11 1 )
±1
, ( 1 3

3 1 )
±1

2
√
6− 1 ≈ 4.4721

Morgenstern: pk + 1

Marcus-Spielman-Srivastava ’13: Bipartite Ramanujan graphs for all k.

Non-bipartite is still open!
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Ramanujan graphs

Well known: Random graphs are good expanders.

Alon’s conjecture (Friedman’s theorem): Random regular graphs are almost
Ramanujan

For any ε > 0, the probability that

Spec (A) ⊆
[
−2
√
k − 1− ε, 2

√
k − 1+ε

]
∪ {k}

goes to 1 as |V | → ∞.

-4 -2 2 4 6

-0.1

-0.05

0.05

0.1

Random regular graph with k = 6, |V | = 300

-6 -4 -2 2 4 6

-0.1

-0.05

0.05
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Digraphs

For a digraph G , Spec (AG ) ⊆ C in general.

For a k-regular digraph, k ∈ Spec (A).

−k ∈ Spec (A) if G is bipartite

e
2πi
3 k ∈ Spec (A) if G is 3-periodic, ...

We call all of these trivial.

A might be non-diagonalizable, or not normal (=unitarily diagonalizable).
Arguments using inner product break down.
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Ramanujan digraphs

What is the universal object?

(a) Cay (Fk , {x1, . . . , xk})

7 / 23



Ramanujan digraphs

What is the universal object?
(a) Cay (Fk , {x1, . . . , xk})

7 / 23



Ramanujan digraphs

What is the universal object?
(a) Cay (Fk , {x1, . . . , xk})

7 / 23



Ramanujan digraphs

(b) Cay (FSGk , {x1, . . . , xk}) (Free semigroup - only positive letters)
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Ramanujan digraphs

(c) Line-digraph of the (k + 1)-regular tree:

Vertices: directed edges of Tk

Edges: e1 → e2 iff e1, e2 is a non-backtracking path
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Ramanujan digraphs

Candidates:

Cay (Fk , {x1, . . . , xk})
Cay (FSGk , {x1, . . . , xk}) (Free semigroup)

LDG (Tk+1) (Line-digraph)

Spectra (I think):

The spectrum of LDG (G) is the spectrum of nonbacktracking random walk on G .

±1 ∈ Spec (LDG (Tk+1)) come from paths from ∞ to ∞.
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Ramanujan digraphs

Definition: a k-regular digraph is a Ramanujan digraph if

Spec (A) ⊆
{
z ∈ C

∣∣∣ |z | ≤ √k or |z | = k
}
.

Example:

Theorem (Ihara-Hashimoto): for a (k + 1)-regular graph,

Spec
(
ALDG(G)

)
= {±1}β1 ∪

{
λ±
√
λ2 − 4k
2

∣∣∣∣λ ∈ Spec (AG )

}

Exercise: λ ∈
[
−2
√
k, 2
√
k
]
⇔
∣∣∣∣λ±√λ2−4k

2

∣∣∣∣ ≤ √k.
So, G is (k + 1)-Ramanujan graph ⇔ LDG (G) is a k-Ramanujan digraph.
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Ramanujan Cayley graphs

Lubotzky-Philips-Sarnak: The matrices

1√
5

(
1 + 2i 0

0 1− 2i

)±1

,
1√
5

(
1 2i
2i 1

)±1

,
1√
5

(
1 2
−2 1

)±1

generate a free group Γ ≤ U
(
Z
[

1√
5

])
, which acts simply transitively on Verts (T6).

(T6 is the the symmetric space of the p-adic Lie group U2 (Q5)).

From deep arithmetic theorems (Ramanujan, Eichler, Igusa, Ihara,
Jacquet-Langlands, Deligne...) it follows that they generate finite graphs with the
same spectrum when projected modulo q. E.g.:( 1+2i

1−2i

)
≡
( 1+2·8

1−2·8
)
≡ ( 4

11 ) (mod 13) .

-6 -4 -2 2 4 6

-0.1

-0.05

0.05

0.1

(Adjacency spectrum of PGL2 (F13) with respect to ( 4 0
0 11 )

±1
, ( 1 2

11 1 )
±1
, ( 1 3

3 1 )
±1)
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Ramanujan Cayley digraphs

P-Sarnak: Construction of C ≤ U (2) , τ ∈ U (2), acting on Tk , so that
C fixes v0 ∈ V (Tk ) and acts simply-transitively on its neighbors.
τ is an involution which flips an edge e0 touching the origin.

It follows that Γ = 〈C , τ〉 acts simply-transitively on the directed edges of the tree.
E.g.:

Γ =

〈(
1 0
0 1

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)
︸ ︷︷ ︸

C

, 1√
3

( 1 1−i
1+i −1

)︸ ︷︷ ︸
τ

〉
y Edges± (T4).
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Ramanujan Cayley digraphs

Observe S = {τc | 1 6= c ∈ C} (|S | = k − 1).
S · . . . · S · e0 - non-backtracking random walk starting from e0.
Random walk with S as generators corresponds to NBRW on the tree!
(Corollary: S generates a free semigroup.)
The Ramanujan conjectures (Deligne’s theorem) imply that if we project S modulo
q we get a finite graph with the same spectrum as before:

Spec (Cay (〈S (mod q)〉 , S (mod q))) ⊆ Spec (LDG (Tk+1)) ∪ {±k} ,

so we get a Ramanujan Cayley digraph.
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Ramanujan Cayley digraphs

Example: Using

〈(
1 0
0 1

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

)
︸ ︷︷ ︸

C

, 1√
3

( 1 1−i
1+i −1

)︸ ︷︷ ︸
τ

〉
,

S =

{
1√
3

(
−1 i − 1

i + 1 −1

)
, 1√

3

(
i − 1 −I
−I −i − 1

)
, 1√

3

(
−i − 1 1
−1 i − 1

)}
and projecting S modulo 13 we obtain

Adjacency spectrum of
PSL2 (F13) with respect to

( 12 9
7 12 ) , ( 6 8

8 9 ) , ( 4 12
1 7 )
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Ramanujan Cayley digraphs

Adjacency spectrum of PGL2 (F17) with respect to ( 16 14
12 16 ) , ( 5 13

13 14 ) , ( 3 16
1 12 )
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Ramanujan complexes

Recall Tp+1 is a symmetric space for U2 (Qp) (and GL2 (Qp)).

Bruhat-Tits buildings are infinite, contractible simplicial complexes, which are
symmetric spaces for higher dimensional p-adic Lie groups.

Ramanujan graphs are graphs with the same spectrum of their covering tree.

Ramanujan complexes are complexes with the “same spectrum” as their covering
building.

Defined and constructed by Ballantine, Cartwright-Steger-Żuk, Li,
Lubotzky-Samuels-Vishne, Sarveniazi, ...
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Random walks

Lubetzky-Peres ‘15: sharp cutoff on Ramanujan graphs:

NBRW on a Ramanujan
graph covers almost all vertices after (1 + ε) logk−1 |V | steps.
Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2× 2
block-diagonal matrix.
We say that if G is a (k + 1)-Ramanujan graph, then Line (G) is a k-regular
2-normal Ramanujan digraph.
[Lubetzky-Lubotzky-P, Kamber]: The 1-geodesic flow on a Ramanujan complex of
dimension d is a (d + 1)-normal Ramanujan digraph.
It has more eigenvalues:

Spectrum of 1-geodesic flow
on 2-dimensional building /

Ramanujan complex
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Ramanujan digraphs

The 1-geodesic flow on a Ramanujan complex of dimension d is a (d + 1)-normal
Ramanujan digraph.

The d-geodesic flow on a Ramanujan complex is a (d + 1) !-normal Ramanujan
digraph.

Corollaries: sharp cutoff, optimal diameter, Riemann Hypothesis.

Theorem (Lubetzky-Lubotzky-P): Any collision-free operator on the Bruhat-Tits
building of a semisimple p-adic Lie group induces an r -normal Ramanujan digraph
on Ramanujan quotients.

Collision-free: there is at most one directed path from x to y .

E.g.: NBRW on a tree.
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Random digraphs

How does the spectrum of a random regular digraph looks like?
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Random digraphs

Conjecture: For any ε > 0, the probability that

Spec (A) ⊆
{
z ∈ C

∣∣∣ |z | ≤ √k + ε or z = k
}

goes to 1 as |V | → ∞.

We can show (P-Puder):

Prob
[
Spec (A) ⊆

{
z ∈ C

∣∣∣ |z | ≤ √2k or z = k
}]

|V |→∞−→ 1.
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Alon-Boppana

Alon-Boppana theorem?

DeBruijn digraphs: have Spec (A) = {0, k} (and arbitrarily large |V |).

Add more assumptions - r -normality, convergence, ...
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Thank you!
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