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Ramanujan Graphs

Adjacency operator of a graph: (Af) (v) =3, ., f(w).
For a k-regular graph G,

Spec (A) = —k <Xy <...< X< A1 =k

@ k is an eigenvalue of the constant eigenfunction.
—k € Spec (A) iff G is bipartite.

G is a good expander if all eigenvalues except £k are close to zero.

G is a Ramanujan graph if
Spec (A) C {—k}U [72\/k —1,2Vk - 1] U {k}.
e Optimal? For G = P°F, (lines against planes in F3),

Spec (A) = {_k, —Vk—1,vVk—1, k} :

Alon-Boppana: For € > 0, there are only finitely many k-regular graphs such that

Spec (A) C {—k} U [—2\/k “1+e2vk— 175] U {k}.
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Ramanujan Graphs

o Why 2k — 17

o Every k-regular graph is a quotient of the k-regular tree Ty.
@ Kesten ('59):
Spec (Anliaw,) = [-2vk—1,2vk—1].

o Ty is the Cayley graph of F,: the free group on k/2 generators.
o Moreover (Kesten): if G = (S) and S = S™! then

Spec (Acwie,) € [~2vk—1,2vk—1]

only if S freely generates G.

o General Alon-Boppana Theorem (Serre, Grinberg, Grigorchuk-Zuk):
if G, is an infinite family of quotients of G then

im A2 (Gr) > A (5)
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o Existence? K, is Ramanujan, but k = |Verts| — 1.
o P?F, is Ramanujan, but k ~ /|V/.

o Lubotzky-Philips-Sarnak, Margulis: for k = prime + 1, there exist k-regular
Ramanujan graphs with |V| — co.

o LPS: explicit construction as Cayley graphs of PGL; (Fq), PSLz (Fg).

0.1
0.05{

6 4 2 E 2 4 6

-0.05
-0.1

Adjacency spectrum of PGL, (F13) with respect to (% &)™, (&4 2)™", (L 3)*

2v/6 — 1~ 4.4721

o Morgenstern: p + 1
@ Marcus-Spielman-Srivastava '13: Bipartite Ramanujan graphs for all k.

o Non-bipartite is still open!
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Digraphs

For a digraph G, Spec (A¢) C C in general.

For a k-regular digraph, k € Spec (A).
—k € Spec (A) if G is bipartite
e ke Spec (A) if G is 3-periodic, ...

We call all of these trivial.

A might be non-diagonalizable, or not normal (=unitarily diagonalizable).
Arguments using inner product break down.
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° L1 >l l—»
I l—»
V_>._>
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Ramanujan digraphs

Candidates:

o Cay (Fi,{x1,..,xx})
o Cay (FSGy, {x1,...,xk}) (Free semigroup)
@ LDG (Tk41) (Line-digraph)

Spectra (I think):

@ The spectrum of LDG (G) is the spectrum of nonbacktracking random walk on G.
o +1 € Spec (LDG (Tk+1)) come from paths from oo to co.
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)\:I:\//\274k‘
2
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Ramanujan digraphs

o Definition: a k-regular digraph is a Ramanujan digraph if
Spec (A) C {z e c\ 2| < VK or |z| = k}.

Example:

@ Theorem (lhara-Hashimoto): for a (k + 1)-regular graph,

)\:I:\//\274k‘
2

Spec (Arpa(e)) = {£1}* U { X € Spec (Ac)}

At/ A2—4k
2

@ Exercise: \ € [72\/12\/;} P2 < Vk.

@ So, G is (k 4+ 1)-Ramanujan graph < LDG (G) is a k-Ramanujan digraph.
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Ramanujan Cayley graphs

o Lubotzky-Philips-Sarnak: The matrices

11420 0\ 1 /1 20\ 1 1 2\
B0 1-2i) s\ 1) s -2 1
generate a free group ' < U (Z [%D which acts simply transitively on Verts (Ts).

@ (Te is the the symmetric space of the p-adic Lie group U (Qs)).

@ From deep arithmetic theorems (Ramanujan, Eichler, Igusa, lhara,
Jacquet-Langlands, Deligne...) it follows that they generate finite graphs with the
same spectrum when projected modulo q. E.g.:

(1+2[ 172:') = (1+2‘8 172»8) =(%4;) (mod 13).

0.1
0.0SE

6 -4 2 i 2 4 6

-0.05
-0.1

(Adjacency spectrum of PGL, (F13) with respect to (4 & )**(

+1 +1
11 111%) ?(%i) )
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Ramanujan Cayley digraphs

@ P-Sarnak: Construction of C < U (2),7 € U (2), acting on Ty, so that

o C fixes vo € V (Ty) and acts simply-transitively on its neighbors.
e 7 is an involution which flips an edge ey touching the origin.

o It follows that ' = (C, 7) acts simply-transitively on the directed edges of the tree.
o Eg.:

(06 (G ) o)D)~ e

T

€
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Random walk with S as generators corresponds to NBRW on the tree!
(Corollary: S generates a free semigroup.)

The Ramanujan conjectures (Deligne’s theorem) imply that if we project S modulo
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Ramanujan Cayley digraphs

TC-€Q
° - —
7 e
Observe S = {7c|1#ce C} (|S|=k-1).
S-...-S: e - non-backtracking random walk starting from eg.

Random walk with S as generators corresponds to NBRW on the tree!
(Corollary: S generates a free semigroup.)

The Ramanujan conjectures (Deligne’s theorem) imply that if we project S modulo
g we get a finite graph with the same spectrum as before:

Spec (Cay ((S (mod q)), S (mod q))) C Spec (LDG (Ts1)) U {4k},

so we get a Ramanujan Cayley digraph.
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Ramanujan Cayley digraphs
. 1 0 i 0 0 1 0 i _i
Example: USIng <<0 1) ’ (6 _’> ) (_1 0) ) (’ 0)7 % (11[ 171 )>1

T

C
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Ramanujan Cayley digraphs

. 10 i 0 0 1 0 i —i
Example: Usmg<<0 1),<0 _,-):(_1 0)7(,’ 0)’\%(11;11)>,
N————
c T

s i 1 i-1Y 4 (i-1 —1\ 4 ( —i-1 1
“\VE i+l -1 )0VB\ - —i-1 )0 VB -1 i-1
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Ramanujan Cayley digraphs

Example: Using <<é (1)> ] (6 _OI> > (_01 (1)) ) ((I)

C

s_fa( 1 -1\ 4 (i-1 —1
A\ i+1 -1 ))vA\ -1 —i-1

and projecting S modulo 13 we obtain

Adjacency spectrum of
PSL; (F13) with respect to

(73),(88).(37)

we
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Ramanujan Cayley digraphs

0.5

2
8§

0.5 |

Adjacency spectrum of PGLz (F17) with respect to (3512),(%13),(3 18
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Ramanujan complexes

@ Recall T,y1 is a symmetric space for U (Q,) (and GLz (Qp)).
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Ramanujan complexes

@ Recall T,y1 is a symmetric space for U (Q,) (and GLz (Qp)).

@ Bruhat-Tits buildings are infinite, contractible simplicial complexes, which are
symmetric spaces for higher dimensional p-adic Lie groups.

@ Ramanujan graphs are graphs with the same spectrum of their covering tree.

@ Ramanujan complexes are complexes with the “same spectrum” as their covering
building.

@ Defined and constructed by Ballantine, Cartwright-Steger-Zuk, Li,
Lubotzky-Samuels-Vishne, Sarveniazi, ...

17/23



Random walks

o Lubetzky-Peres ‘15: sharp cutoff on Ramanujan graphs:

18/23



Random walks

@ Lubetzky-Peres ‘15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan
graph covers almost all vertices after (1 + <) log,_; | V| steps.

18/23



Random walks

@ Lubetzky-Peres ‘15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan
graph covers almost all vertices after (1 + <) log,_; | V| steps.

@ Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2 x 2
block-diagonal matrix.

18/23



Random walks

@ Lubetzky-Peres ‘15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan
graph covers almost all vertices after (1 + <) log,_; | V| steps.

@ Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2 x 2
block-diagonal matrix.

o We say that if G is a (k + 1)-Ramanujan graph, then Line (G) is a k-regular
2-normal Ramanujan digraph.

18/23



Random walks

@ Lubetzky-Peres ‘15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan
graph covers almost all vertices after (1 + <) log,_; | V| steps.

@ Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2 x 2
block-diagonal matrix.

o We say that if G is a (k + 1)-Ramanujan graph, then Line (G) is a k-regular
2-normal Ramanujan digraph.

o [Lubetzky-Lubotzky-P, Kamber]: The 1-geodesic flow on a Ramanujan complex of
dimension d is a (d 4 1)-normal Ramanujan digraph.

18/23



Random walks

@ Lubetzky-Peres ‘15: sharp cutoff on Ramanujan graphs: NBRW on a Ramanujan
graph covers almost all vertices after (1 + <) log,_; | V| steps.

@ Main ingredient: the NBRW operator is almost normal: unitarily equivalent to 2 x 2

block-diagonal matrix.

We say that if G is a (k 4+ 1)-Ramanujan graph, then Line (G) is a k-regular

2-normal Ramanujan digraph.

[Lubetzky-Lubotzky-P, Kamber]: The 1-geodesic flow on a Ramanujan complex of

dimension d is a (d 4 1)-normal Ramanujan digraph.

o It has more eigenvalues:

Spectrum of 1-geodesic flow Cl\{ﬁ N
on 2-dimensional building / \J

Ramanujan complex
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Ramanujan digraphs

@ The 1-geodesic flow on a Ramanujan complex of dimension d is a (d + 1)-normal
Ramanujan digraph.

@ The d-geodesic flow on a Ramanujan complex is a (d + 1) I-normal Ramanujan
digraph.

o Corollaries: sharp cutoff, optimal diameter, Riemann Hypothesis.

o Theorem (Lubetzky-Lubotzky-P): Any collision-free operator on the Bruhat-Tits
building of a semisimple p-adic Lie group induces an r-normal Ramanujan digraph
on Ramanujan quotients.

o Collision-free: there is at most one directed path from x to y.
o E.g.: NBRW on a tree.
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Random digraphs

o Conjecture: For any € > 0, the probability that
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Random digraphs

o Conjecture: For any € > 0, the probability that
Spec (A) C {ZECMZ‘ <Vk+e orz:k}

goes to 1 as | V| — oo.
o We can show (P-Puder):

Prob [Spec(A) - {z € C‘ |z < V2k or z = k” M2,
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Alon-Boppana

@ Alon-Boppana theorem?
@ DeBruijn digraphs: have Spec (A) = {0, k} (and arbitrarily large |V]).

e b4 i
011 100 101 110 111
1

@ Add more assumptions - r-normality, convergence, ...
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Thank you!
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