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Basic Setting

G : a graph with the vertex set V and the edge set E such that

G is undirected, connected, and simple;

G is embedded into a 2-mainfold Ω locally finitely;

every face of G (a component of Ω \ G ) is homeomorphic to
the unit disk and the boundary of each face is homeomorphic
to a circle or a straight line; and

3 ≤ deg v <∞ and 3 ≤ deg f ≤ ∞ for every v ∈ V and
f ∈ F , where F is set of faces of G .

In most cases we also assume that

G is infinite and Ω = R2; and

3 ≤ deg f <∞ for every f ∈ F .

Under these assumptions, one can check that G is 2-connected;
that is, G minus a vertex still remains connected.
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Basic Setting

Note that in our setting two different faces may share more
than one vertex without sharing an edge.

But if we further assume that if the intersection of two faces is
empty, or a vertex, or an edge, then G becomes a 3-connected
graph; i.e., G minus any two vertices is connected.

Such G is a tessellation graph or an edge graph of the plain
tiling.
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Subgraph

A graph S = (V (S),E (S)) is called a subgraph of G if V (S) ⊂ V
and E (G ) ⊂ E .

A subgraph S ⊂ G is called induced if for every v ,w ∈ V (S),
vw ∈ E implies vw ∈ E (S).

We define the face set F (S) of S ⊂ G as the subset of F such
that f ∈ F (S) if and only if f ∈ F and f is a component of
Ω \ S .

For the boundaries of S , we define

∂S : the set of edges connecting S to G \ S
bdS : the set of edges in E (S) that is incident to a face in F \ F (S)
d0S : the set of vertices in V (S) which has a neighbor in V \ V (S)
d1S : the set of vertices in V \ V (S) which has a neighbor in V (S)
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Isoperimetric Constants

Isoperimetric constants of G are defined by

ıp(G ) := inf
S

|∂S |
Vol (S)

, ı(G ) = inf
S

|∂S |
|V (S)|

,

0(G ) = inf
S

|d0S |
|V (S)|

, 1(G ) = inf
S

|d1S |
|V (S)|

,

ı∗(G ) = inf
S

|bdS |
|F (S)|

,

where | · | denotes the cardinality, Vol (S) =
∑

v∈V (S) deg v , and
the infimums are taken over all finite subgraphs S ⊂ G .
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Isoperimetric Constants

Isoperimetric constants are discrete analogues of Cheeger’s
constant in Differential Geometry.

We say that G satisfies a strong isoperimetric inequality if an
isoperimetric constant is positive.

One can check that

- ı(G∗) = ı∗(G ), where G∗ is the dual graph of G

- 0(G ) = 1(G )/(1 + 1(G ))

- ıp(G ) > 0⇐⇒ ı(G ) > 0

- 0(G ) > 0 =⇒ ı(G ) > 0, ıp(G ) > 0, ı∗(G ) > 0.
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Combinatorial Curvature

For each v ∈ V , we define the vertex curvature at v by

φ(v) := 1− deg v

2
+

∑
f :v∈V (f )

1

deg f
.

For finite subgraph S ⊂ G , we define

φ(S) =
∑

v∈V (S)

φ(v).

Other combinatorial curvatures: face curvature, edge
curvature, corner curvature, etc.
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Meaning of Combinatorial Curvature

For each f ∈ F , we associate a Euclidean regular (deg f )-gon
with unit edge length, and paste them along edges exactly the
way that the faces of G are pasted.

Then the resulting surface Γ is a surface of polyhedral metric,
which is a kind of Aleksandrov surfaces. Note that G is
naturally embedded into Γ.

Γ is locally Euclidean except at the points corresponding to
the vertices of G , and the total angle at v ∈ V (G ) ⊂ Γ is

T (v) =
∑

f :v∈V (f )

π(deg f − 2)

deg f
= π · deg v − 2π

∑
f :v∈V (f )

1

deg f
,

hence v carries an atomic curvature 2π − T (v) = 2πφ(v).
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Combinatorial Gauss-Bonnet Theorem-Basic Form

Theorem (Combinatorial Gauss-Bonnet Theorem-Basic Form)

Suppose G is a finite connected simple graph embedded into a
compact 2-manifold Ω. Then we have

φ(G ) =
∑

v∈V (G)

φ(v) = χ(Ω).

There are other forms of Combinatorial Gauss-Bonnet
Theorem in literature.

Using the Combinatorial Gauss-Bonnet Theorem one can
deduce many useful theorems. For example, using the basic
form above, one can prove the famous theorem that every
finite planar graph has a vertex of degree at most 5.
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Negatively Curved Graphs

Let G be a connected simple infinite graph embedded into R2.
The following works were done independently.

Theorem (Żuk, 1997)

If φ(v) < 0 for every v ∈ V (G ∗), then ıp(G ) > 0.

Theorem (Woess, 1998)

If φ(G ) := lim sup
|V (S)|→∞

φ(S)

|V (S)|
< 0, where the limit superior is taken

over all connected and finite subgraphs S, then ıp(G ) > 0.

Theorem (Higuchi, 2001)

If φ(v) < 0 for every v ∈ V (G ), then ı∗(G ) > 0.
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Theorem (Żuk, 1997)

If φ(v) < 0 for every v ∈ V (G ∗), then ıp(G ) > 0.

Theorem (Woess, 1998)

If φ(G ) := lim sup
|V (S)|→∞

φ(S)

|V (S)|
< 0, where the limit superior is taken

over all connected and finite subgraphs S, then ıp(G ) > 0.

Theorem (Higuchi, 2001)

If φ(v) < 0 for every v ∈ V (G ), then ı∗(G ) > 0.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



Negatively Curved Graphs

Let G be a connected simple infinite graph embedded into R2.
The following works were done independently.

Theorem (Żuk, 1997)
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Negatively Curved Graphs

We also have

Theorem (O., 2014)

Suppose G and G ∗ are 2-connected simple infinite planar graphs.
Then

1. 0(G ) > 0⇐⇒ 0(G ∗) > 0

2. If φ(G ) := lim sup
|V (S)|→∞

φ(S)

|V (S)|
< 0 and G is 3-connected, then

0(G ) > 0. Therefore in this case we also have ı(G ) > 0,
ı∗(G ) > 0, 0(G ∗) > 0, ı(G ∗) > 0, and ı∗(G ∗) > 0.

3. If ı∗(G ) > 0 and the face degrees of G are bounded by above,
then G is Gromov hyperbolic.

Theorem (O., and Seo, 2016)

The above result can be extended to planar graphs with more than
one end.
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We also have
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Suppose G and G ∗ are 2-connected simple infinite planar graphs.
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Positively Curved Graphs

Theorem (DeVos and Mohar, 2007. Myer’s Theorem for
Tessellation)

Suppose G is a connected simple graph embedded into a
2-manifold without boundary. If φ(v) > 0 for every v ∈ V (G ),
then G is finite. Moreover, if G is different from prisms or
antiprisms, then |V (G )| ≤ 3444.

(a) Prism (b) Antiprism
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Positively Curved Graphs

Theorem (DeVos and Mohar, 2007. Myer’s Theorem for
Tessellation)

Suppose G is a connected simple graph embedded into a
2-manifold without boundary. If φ(v) > 0 for every v ∈ V (G ),
then G is finite. Moreover, if G is different from prisms or
antiprisms, then |V (G )| ≤ 3444.

(e) Prism (f) Antiprism

Question(asked by DeVos and Mohar): what is the best constant
C0 that can take the place of 3444 in the previous statement?
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Positively Curved Graphs

The following are the known bounds for C0.

138 ≤ C0 (Réti, Bitay, and Kosztolányi , 2007)

C0 < 580 (Zhang, 2008)

208 ≤ C0 (Nicholson and Sneddon, 2008)

C0 ≤ 380 (O., 2017)

Thus we know that 208 ≤ C0 ≤ 380, but the exact value of C0 is
not known yet.
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138 ≤ C0 (Réti, Bitay, and Kosztolányi , 2007)
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Positively Curved Graphs

The following theorems are also worth to mention:

Theorem (Chen, 2009)

Suppose G is a connected simple infinite graph embedded into a
2-manifold without boundary. If φ(v) ≥ 0 for every v ∈ V , then
φ(v) = 0 for all v ∈ V except finitely many.

Theorem (Hua and Su, preprint)

Under the same assumption as above, we have

φ(G ) =
∑
v∈V

φ(v) ≥ 1

12
.
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(p, q)-Regular Graphs

Let G be a simple graph embedded into R2 such that deg v = p
and deg f = q for every v ∈ V and f ∈ F , where p, q are natural
numbers greater than or equal to 3. Such G will be called a
(p, q)-regular graph.

CASE I:
1

p
+

1

q
>

1

2

In this case G is finite and one of the platonic solids; i.e., G is one
of the tetrahedron, the octahedron, the icosahedron, the cube, or
the dodecahedron.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



(p, q)-Regular Graphs

Let G be a simple graph embedded into R2 such that deg v = p
and deg f = q for every v ∈ V and f ∈ F , where p, q are natural
numbers greater than or equal to 3. Such G will be called a
(p, q)-regular graph.

CASE I:
1

p
+

1

q
>

1

2

In this case G is finite and one of the platonic solids; i.e., G is one
of the tetrahedron, the octahedron, the icosahedron, the cube, or
the dodecahedron.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



(p, q)-Regular Graphs

Let G be a simple graph embedded into R2 such that deg v = p
and deg f = q for every v ∈ V and f ∈ F , where p, q are natural
numbers greater than or equal to 3. Such G will be called a
(p, q)-regular graph.

CASE I:
1

p
+

1

q
>

1

2

In this case G is finite and one of the platonic solids; i.e., G is one
of the tetrahedron, the octahedron, the icosahedron, the cube, or
the dodecahedron.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



(p, q)-Regular Graphs

Let G be a simple graph embedded into R2 such that deg v = p
and deg f = q for every v ∈ V and f ∈ F , where p, q are natural
numbers greater than or equal to 3. Such G will be called a
(p, q)-regular graph.

CASE I:
1

p
+

1

q
>

1

2

In this case G is finite and one of the platonic solids; i.e., G is one
of the tetrahedron, the octahedron, the icosahedron, the cube, or
the dodecahedron.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



(p, q)-Regular Graphs

CASE II:
1

p
+

1

q
=

1

2

In this case G is infinite and one of the regular tilings of the plane;
i.e., G is one of the regular triangulation of the plane, the square
lattice, or the hexagonal honeycomb. Consequently, all
isoperimetric constants of G are zero in this case.
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(p, q)-Regular Graphs

CASE III:
1

p
+

1

q
<

1

2

In this case G is infinite and a tessellation graph of the hyperbolic
plane. Moreover, we have

Theorem (Häggström, Jonasson, and Lyons, (2002) & Higuchi and
Shirai (2003))

Suppose G is a (p, q)-regular graph with 1
p + 1

q <
1
2 .Then

ıp(G ) =
p − 2

p

√
1− 4

(p − 2)(q − 2)
,

ı∗(G ) = (q − 2)

√
1− 4

(p − 2)(q − 2)
.
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Lower Bounds for Isoperimetric Constants

Let G(p, q) be the collection of (infinite) simple planar graphs such
that deg v ≥ p and deg f ≥ q. If q = 3, we will use the notation
G(p, 3) = G(p).

Theorem (Dodziuk, 1984)

If G ∈ G(7), then ı∗(G ) ≥ 1
26 .

Theorem (Mohar, 1992)

If G ∈ G(p) for some p ≥ 7, then ı∗(G ) ≥ p−6
p−4 .

Theorem (Lawrencenko, Plummer, and Zha, 2002)

If G ∈ G(p) for some p ≥ 7, then

ı∗(G ) ≥ (p − 6)(p2 − 8p + 15)

(p − 4)(p2 − 8p + 13)
.
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Lower Bounds for Isoperimetric Constants

Conjecture (Lawrencenko, Plummer, and Zha, 2002)

If G ∈ G(p) for some p ≥ 7, then ı∗(G ) ≥
√

p−6
p−2 .

They also implicitly conjectured that if G ∈ G(p, q) for some p, q
satisfying 1

p + 1
q <

1
2 , then

ı∗(G ) ≥ (q − 2)

√
1− 4

(p − 2)(q − 2)

This is a very natural conjecture, since if G ∈ G(p, q), then it is
negatively curved more than the (p, q)-regular graph, hence the
isoperimetric constants of G would be greater than or equal to
those of the (p, q)-regular graph.
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Lower Bounds for Isoperimetric Constants

Theorem (O., in preparation)

If G ∈ G(p, q) for some p, q satisfying 1
p + 1

q <
1
2 , then

1. ıp(G ) ≥ p − 2

p

√
1− 4

(p − 2)(q − 2)
,

2. ı(G ) ≥ (p − 2)

√
1− 4

(p − 2)(q − 2)
,

3. ı∗(G ) ≥ (q − 2)

√
1− 4

(p − 2)(q − 2)
, etc.

The above constants are sharp because they are the corresponding
isoperimetric constants of the (p, q)-regular graph.

Also note that the above theorem fully resolves the conjecture of
Lawrencenko, Plummer, and Zha.
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Sketch of Proof

The main lemma for the proof is the following.

Lemma (Main Lemma)

Suppose S is a finite subgraph of G and let S◦ be the induced
graph with V (S◦) = V (S) \ V (bd (S)). Then

|V (bd (S))| ≥ |V (bd (S◦))|+ (pq − 2p − 2q)|V (S◦)|+ 2q

if V (S◦) \ V (bd (S◦)) 6= ∅, and

|V (bd (S))| ≥ |V (bd (S◦))|+ (pq − 2p − 2q)|V (S◦)|+ 2q − 1

if V (S◦) \ V (bd (S◦)) = ∅.
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Sketch of Proof

Using the main lemma repeatedly, one can associate S with a
sequence an such that a0 ≥ 1, ak = |V (bd (S))| for some k ∈ N,
and an ≥ an−1 + (pq − 2p − 2q)(a0 + a1 + · · ·+ an−1) + 2q for
every n ≥ 2, etc.

Then by studying the sequence an carefully, it is possible to obtain
the sharp lower bounds for isoperimetric constants.

The main tools for the main lemma are some versions of
Combinatorial Gauss-Bonnet Theorem.

Suppose S is a finite subgraph of G . Then one walks along bd (S)
from the outside and get the total left turns (exterior curvatures),
which we denote by τo(bd (S)). Note that this is the total left
turns occurred on the boundary of the ε-neighborhood of
D(S) :=

∑
f ∈F (S) f . Similarly let τi (bd (S)) be the total left turns

(interior curvatures) obtained when one walks along bd (S) from
the inside.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



Sketch of Proof

Using the main lemma repeatedly, one can associate S with a
sequence an such that a0 ≥ 1, ak = |V (bd (S))| for some k ∈ N,
and an ≥ an−1 + (pq − 2p − 2q)(a0 + a1 + · · ·+ an−1) + 2q for
every n ≥ 2, etc.

Then by studying the sequence an carefully, it is possible to obtain
the sharp lower bounds for isoperimetric constants.

The main tools for the main lemma are some versions of
Combinatorial Gauss-Bonnet Theorem.

Suppose S is a finite subgraph of G . Then one walks along bd (S)
from the outside and get the total left turns (exterior curvatures),
which we denote by τo(bd (S)). Note that this is the total left
turns occurred on the boundary of the ε-neighborhood of
D(S) :=

∑
f ∈F (S) f . Similarly let τi (bd (S)) be the total left turns

(interior curvatures) obtained when one walks along bd (S) from
the inside.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



Sketch of Proof

Using the main lemma repeatedly, one can associate S with a
sequence an such that a0 ≥ 1, ak = |V (bd (S))| for some k ∈ N,
and an ≥ an−1 + (pq − 2p − 2q)(a0 + a1 + · · ·+ an−1) + 2q for
every n ≥ 2, etc.

Then by studying the sequence an carefully, it is possible to obtain
the sharp lower bounds for isoperimetric constants.

The main tools for the main lemma are some versions of
Combinatorial Gauss-Bonnet Theorem.

Suppose S is a finite subgraph of G . Then one walks along bd (S)
from the outside and get the total left turns (exterior curvatures),
which we denote by τo(bd (S)). Note that this is the total left
turns occurred on the boundary of the ε-neighborhood of
D(S) :=

∑
f ∈F (S) f . Similarly let τi (bd (S)) be the total left turns

(interior curvatures) obtained when one walks along bd (S) from
the inside.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



Sketch of Proof

Using the main lemma repeatedly, one can associate S with a
sequence an such that a0 ≥ 1, ak = |V (bd (S))| for some k ∈ N,
and an ≥ an−1 + (pq − 2p − 2q)(a0 + a1 + · · ·+ an−1) + 2q for
every n ≥ 2, etc.

Then by studying the sequence an carefully, it is possible to obtain
the sharp lower bounds for isoperimetric constants.

The main tools for the main lemma are some versions of
Combinatorial Gauss-Bonnet Theorem.

Suppose S is a finite subgraph of G . Then one walks along bd (S)
from the outside and get the total left turns (exterior curvatures),
which we denote by τo(bd (S)). Note that this is the total left
turns occurred on the boundary of the ε-neighborhood of
D(S) :=

∑
f ∈F (S) f . Similarly let τi (bd (S)) be the total left turns

(interior curvatures) obtained when one walks along bd (S) from
the inside.

Byung-Geun Oh (Hanyang University, Korea) Isoperimetric constants on planar graphs



Sketch of Proof

For v ∈ bd (S), let cn(v) be the number of components of the
ε-neighborhood of v minus D(S), and set
C =

∑
v∈bd (S)(cn(v)− 1).

Theorem (Combinatorial Gauss-Bonnet Theorem involving turns on
the boundary)

Suppose S is a finite subgraph of G. Then

(1) φ(S) = χ(S) + τo(bd (S))

(2) φ(S◦) + τi (bd (S)) = χ(S) + C.

By using (1) applied to S◦, one can get a lower bound of the
number of edges from S◦ to bd (S), and then by using (2) one can
obtain a lower bound of the number of vertices on bd (S), which
gives a proof for the main lemma.
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Suppose S is a finite subgraph of G. Then

(1) φ(S) = χ(S) + τo(bd (S))

(2) φ(S◦) + τi (bd (S)) = χ(S) + C.

By using (1) applied to S◦, one can get a lower bound of the
number of edges from S◦ to bd (S), and then by using (2) one can
obtain a lower bound of the number of vertices on bd (S), which
gives a proof for the main lemma.
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Thank You !!!
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