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Burgers Equation (Burgers ’48)

Viscous Burgers Equation (BE):

∂u

∂t
+ (u · ∇) u︸ ︷︷ ︸

convection

= ν∆u, ν > 0

(BE) describes laminar flow in fluid dynamics.

Aim:

1. Formulation on X

2. Existence of solutions

For related results (existence, uniqueness and regularity of the
solution for (BE)) we refer to Liu and Qian [LQ].



Starting point

Consider the Cauchy problem for the Heat Equation (HE):{
wt(x , t) = ν∆w(x , t), t > 0

w(x , 0) = w0(x)

with ess sup w0(x) > c0 > 0, w0 ∈ L2(X , µ).

Idea:
Use knowledge about (HE) and Cole Hopf Transformation
[Col51, Hop50]

u(x , t) := −2ν
(w(x , t))x

w(x , t)

to proof existence of solutions!



Setup

I X locally compact separable metric space

I µ Radon measure on X s.t. µ(U) > 0 ∀U ⊂ X open, U 6= ∅
I (E ,F) symmetric local regular Dirichlet form on L2(X , µ)

Cb := F ∩ Cb(X ).
Endowed with the norm ‖ f ‖Cb := E1(f )1/2 + sup

x∈X
| f (x) |, f ∈ Cb

⇒ Cb becomes an algebra, see [BH91, Cor. I.3.3.2], and it holds

E(fg)
1
2 ≤ ‖f ‖∞E(g)

1
2 + ‖g‖∞E(f )

1
2 ∀ f , g ∈ F

C∗b - dual space of Cb, normed by

‖ g ‖C∗b = sup{| g(f ) |: f ∈ Cb, ‖ f ‖Cb≤ 1}.



Abstract Derivation And Divergence

According to Ionescu, Rogers and Teplyaev [IRT12] we use the
framework of 1-forms and derivations introduced by Cipriani and
Sauvageot [CS03].

Definition
A derivation operator ∂ : F → H can be defined by setting

∂f := f ⊗ 1, f ∈ F .



Remark
It is a bounded linear operator satisfying the Leibniz property

∂(fg) = (∂f )g + f (∂g).

The operator ∂ : F → H can be extended to a closed linear
operator ∂µ : L2(X , µ)→ H with domain dense in F , satisfying

‖∂f ‖2
H = E(f ), f ∈ F .

Corollary

Let (E ,F) be a strong local Dirichlet form. For f ∈ F and
F ∈ C 1(R) the chain rule is also satisfied

∂F (f ) = F ′(f )∂f .



Definition (divergence)

The divergence ∂∗µ : H → L2(X , µ) is defined as -adjoint operator
to ∂µ, equipped with the domain

D(∂∗µ) :=
{

v ∈ H : ∃u ∈ L2(X , µ) : 〈u, φ〉L2(X ,µ) = −〈v , φ〉H ∀φ ∈ F
}
.

For v ∈ D(∂∗µ) set ∂∗µv := u.

Remark
For f ∈ Cb is the following true:

∂µf ∈ D(∂∗µ) and ∆µf = ∂∗µ∂µf .

In our set-up we will consider f ∈ D(∆µ) such that

∆µf ∈ C (X ) ⊂ L2(X , µ). (1)



Definition
We define the space of test vector fields as

DH→Cb(X )(∂∗µ) :=
{

v ∈ D(∂∗µ) : ∂∗µv ∈ Cb(X )
}
.

For u ∈ H, v ∈ DH→Cb(X )(∂∗µ)

∆µ,1u(v) :=
(
∂µ∂

∗
µu
)

(v) := −(∂∗µu)(∂∗µv),

∂µ〈u, u〉H := −〈(∂∗µv)u, u〉H

For f as in (1), we have ∂f ∈ DH→Cb(X )(∂∗µ).



Existence of weak solution

Definition
Let u0 ∈ H. We say that a function u : [0,∞)→ H with initial
condition u0 is a weak solution of the abstract Burgers Equation, if
the function is differentiable on (0,∞) and obeys for all
v ∈ DH→Cb

(∂∗){
∆µ,1u(v)− ∂〈u(t), u(t)〉H(v) = 〈ut(t), v〉H, t > 0

limt→0〈u(t)− u0, v〉H = 0.
(2)

Theorem
Let w0 ∈ Cb a positively function with w0(x) ≥ c0, x ∈ X , for a
fixed constant c0 > 0.

u(t) := −∂(log w(t)), t > 0, with u0 = −∂ log w0

is a weak solution of the initial problem (2).



Application: Burgers Equation On Metric Graphs

Based on Boutet de Monvel, Lenz and Stollmann [BdMLS09] and
Haeseler [Hae], we define the notion of metric graphs and a
topology on it.

Definition
A metric graph is Γ = (E ,V , i , j) where

I E (edges) is a countable family of open intervals (0, l(e)) and
V (vertices) is a countable set.

I i : E → V defines the initial point of an edge and
j : {e ∈ E | l(e) <∞} → V the end point for edges of finite
length.

Set Xe := {e} × e, X = XΓ = V ∪
⋃

e∈E Xe and
X̄e := Xe ∪ {i(e), j(e)}.
The topology on XΓ will be such that the mapping
πe : Xe → (0, l(e)), (e, t) 7→ t extends to a homeomorphism again
denoted by πe : X̄e → ¯(0, l(e)) that satisfies πe(i(e)) = 0 and
πe(j(e)) = l(e).



measure on XΓ: for Y ⊂ XΓ∫
Y

u(x)dµ(x) :=
∑
e∈E

∫
e∩Y

u(x)dµ(x),

where µ is the measure induced by the images of the Lebesgue
measure on each (0, l(e)).

L2(XΓ, µ) =
⊕
e∈E

L2(0, l(e))

D(E) = W 1,2
0 (XΓ), E(u, v) :=

∑
e∈E

∫ l(e)

0
u′e(x)v ′e(x)dx ,

where ue := u ◦ π−1
e defined on (0, l(e)),

W 1,2(XΓ) =
{

u ∈ C (XΓ) |
∑
e∈E
‖ ue ‖2

W 1,2=:‖ u ‖2
W 1,2<∞

}
,

W 1,2
0 (XΓ) := W 1,2(XΓ) ∩ Cc(XΓ).



Because of energy measure

dΓ(u(x)) =| u′(x) |2 dµ(x) =
∑
e∈E
| u′e(x) |2 dx

the mapping g∂f ∈H to gf ′ can be extended to an isometric
isomorphism H ∼= L2(XΓ, µ) in that

‖ g∂f ‖2
H =‖ gf ′ ‖2

L2(XΓ,µ) .

Proposition [IRT12], see also [BK]

Identifying H and L2 as above, the derivation
∂ : D(E)→H ∼= L2(XΓ, µ) is the usual derivative (which takes
orientation of edges into account).

Similarly, we obtain the divergence operator ∂∗.



u 7→ ∂∗v(u) := −〈∂u, v〉H = −
∑
e∈E

∫ l(e)

0
u′e(x)ve(x)dx ∀u ∈ Cb.

We consider f ∈ D(∆µ) such that

∂f ∈ D(∂∗) and ∂∗∂f = ∆µf in L2(XΓ, µ).

D̃ := {v ∈H | v = ∂f + η : f ∈ D(∆µ), η ∈ Ker ∂∗}

subspace of the space DH→Cb(∂∗).
For v ∈ D̃

(∂∂∗u)(v) := −(∂∗u)(∂∗v) = −∂∗(∆µf ) = −〈∂∗u,∆µf 〉L2(XΓ,µ),

∂〈u, u〉H = −〈(∆µf )u, u〉L2(XΓ,µ) = −
∑
e∈E

∫ l(e)

0
(∆µfe(x))ue(x)2dx ,



Application: Burgers Equation On Sierpinski Gasket

Setup

I X = SG Sierpinski gasket

I µ finite Borel measure s.t. µ(U) > 0 ∀U ⊂ SG open, U 6= ∅
I (E ,F) standard resistence form

I ∆µ Laplacian, defined by

E(u, v) = −
∫

v∆µudµ

for all v ∈ F vanishing on the boundary
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