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Theorem (JORDAN—KINDERLEHRER—OTTO ’98)

The heat flow is the gradient flow of the entropy w.r.t W5 , i.e.,

1d
Otpe = Ap = 53 Wa (e, v)? < Ent(v) — Ent(u¢) Vv .

How to make sense of gradient flows in metric spaces?

Gradient flows in R"
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Diffusion equations via optimal transport

Advantages: The optimal transport approach to diffusion equations

applies to a large class of equations (Fokker Planck, porous
medium, McKean-Vlasov equations, .. .)

is physically appealing
yields functional inequalities and equilibration rates
applies to non-smooth problems

leads to the synthetic notion of Ricci curvature:
(Lott—Sturm—Villani theory in metric measure spaces)
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e Set fio := (1 — a)dg + ady for a € [0,1]. Then:
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e Suppose that (j4(r)) is a constant speed geodesic. Then:

V0a(t) = a(s)| = Walpa(e)s Has)) = clt — 5|,

Thus: t — «(t) is 2-Hdlder, hence constant.

e Conclusion: there are no non-trivial W5-geodesics. In fact:
(P(X), Wa) is a geodesic space < (X, d) is a geodesic space.

Moreover: no curves of finite length ~~ no gradient flows.

Question: Is there a discrete JKO-Theorem?
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Discrete setting

Setting
e X : finite set
e Q(x,y) : transition rate from x to y

o m: reversible measure,  Vx,y : Q(x,y)w(x) = Q(y,x)n(y)

Heat flow

e Markov generator: Li(x) := Zy Qx, y)(W(y) — ¥(x))

« Continuous time Markov semigroup: P; = et~

Relative Entropy
e PX)i={p: X SR | Tyenp¥)mlx) =1}
e Ent(p) := > p(x)logp(x)7(x),  peP(X).

XEX
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1
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Benamou-Brenier formula in R"

1
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Discrete heat flow as gradient flow

e W defines a (Riemannian) metric on P(X).

Discrete JKO-Theorem (M , MIELKE)

The heat flow is the gradient flow of the entropy w.r.t. W.

Why the logarithmic mean?
e Represent heat equation as continuity equation:

Op=A0p <+ { W= _Vlogp

e Log-mean compensates for the lack of discrete chain rule:

) o o paa o px)=ply)
p(XJ/)—/O p()" " pl(y)* dar = log p(x) — log p(y)

Starting point for a notion of discrete Ricci curvature (with Erbar)
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Dissipative Quantum mechanics

Dynamics of open quantum systems

Let $ be a (finite-dimensional) Hilbert space

Let B(H) ={p € B(H) : p=p*>0,Tr[p] = 1} be the set
of density matrices

Let PZ — e£" be a TPCP semigroup acting on B(H), ie.,

o P} is trace-preserving, i.e., Tr[P,_Tp] = Tr[p] forall t >0
° ’P;r is completely positive, i.e., P}L ® Iaqn preserves positivity Vn

Then, £t can be written in Lindblad form
Llp = —ilH,pl + 33; [V;, oV} 1+ [Vip, Vi1,
where the Hamiltonian H is self-adjoint, and V; € B($).

[GORINI/KOSSAKOWSKI/SUDARSHAN, LINDBLAD 1976]
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Monotonicity of the quantum relative entropy

e General form of completely positive trace preserving
Markovian dynamics:

dtp = LTp (Lindblad equation)

where LTp = —i[H, p] + 35; [V}, pV}] + [Vjp, V}] .
e Assume that o € §) is a stationary state, i.e., Lioc=0.

e Let Ent(p|o) = Tr[p(log p — log o)] be the quantum relative
entropy.

e [sronn 78] Along the Lindblad equation, t — Ent(p¢|o)
decreases.

Question

Can we formulate the Lindblad equation d:p = LT p as gradient flow
of the relative entropy?
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Example: the quantum Ornstein-Uhlenbeck semigroup

e Let a be an operator satisfying [a,a*] =/

o Concrete realisation: $5 = L?(R,~), v Gaussian measure,
a=20,, a" =x-—0

e For 5 > 0, consider the quantum OU-operator
1 1
t _ T .B8/2 * * - _—pB/2 * *
Lyp 5¢€ <[a,pa |+ [ap, a ]) + 5¢€ ([a ,pal + [a*p, a])

o J! stationary state: o = Z le BH
where H = a*a = 02 — x0y is the classical OU-operator

Conjecture: [HUBER/KONIG/VERSHYNINA '16]

Ent(P)plog) < e 25t Ent(plog) where  Ag = sinh(53/2) .
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Quantum detailed balance

e Let (P]) be a TPCP semigroup on B(5).

e Let P; be its adjoint w.r.t. the scalar product
(A, B) = Tr[A*B] on B(9).

e We say that a density operator o satisfies detailed balance
if Py is self-adjoint w.r.t. (A, B), := Tr[cA*B].

Structure of Lindblad operators with detailed balance [Arickr *76]
If o satisfies detailed balance for (P:), then
L=y eu2cl Lip=[V;,pVi]+ [Vip, VT,

where {V;}; = {V/'}; and [V} logo] = —w;V; for some w; € R .
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Gradient flow structures

Can we formulate the Lindblad equation d;p = LTp as
gradient flow of the relative entropy?

Assume first: o = 1. Then: £ = L.
Write 0;A = [V, A]. Then L has the div-form representation

LA=—3 0o

J
Ansatz: define a distance W on () by

Wi = { [ S WAy e 2101 )

s.t. 8tp+zj8JT(p03jA):O, PP~ pPL -
How to define the product e 7
Need: non-commutative version of the classical chain rule

Vp=pViogp?
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A non-commutative chain rule

Is there a non-commutative chain rule “0;p = p @ J; log p"?
e Recall that 9;A = [V}, A]
e Observe: GJ(AB) = (@A)B + AGJ-B

e Consequently:

n—1
0(AT) = Ak (giA) ATk
k=0
o Set p = AY/". Then:

n—1
(9]/) _ Zpk/n (8jp1/n)p17(k+1)/n
k=0

1
n— oo : Ojip = / p° (9 log p)p*~°ds
0
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Then, the Lindblad equation 9:p = LT p is the gradient flow equation
for the von Neumann entropy Ent(p) = Tr[plog p] w.r.t W.

W is defined by the non-commutative Benamou-Brenier formula:
, 1
W<(po, = inf / E Tr[(0;A)* p e 0;A]dt :
(po, p1) p’A{ 0 & [(0;A) p @ 9;A]

Oep+ > 0l(pedA) =0, p:po Wpl}
j

where pe B := 01 p° Bpl=*ds.
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Quantum JKO: the general case

o Let PZ be a CPTP-semigroup satisfying o-DBC.

e Is there a non-commutative chain rule of the form
oV(p/o) = pV(logp —logo) ?

e We have

o' 20;(c712po"2) g2 = p e; (9;(log p — log 7)) |

where .
pejA= / (e77/2p) " A7) ds
0

Quantum JKO-Theorem Il (CarLen-M. , Misrke-Mirrnenzweic 2016)

Assume that 731 = et£" satisfies detailed balance w.r.t. o.
Then, the Lindblad equation d:p = Lp is the gradient flow equation
for the quantum relative entropy Ent(:|o’) w.r.t the metric W.
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Geodesic convexity of the entropy

How to prove geod. convexity of the entropy in (Z(R"), W,)?
Suffices: = [WE(v, Pep) — W3 (v, p)] < Ent(v) — Ent(Pep)
Take a geodesic from pg =v top1 =p: 0Osps+ V- Vs =0.
Set p; = Pstps. Then: p =v,p] = Prp, Ospi+V - V=0,
where

VE= PyVs — tVpl .



Geodesic convexity of the entropy

We obtain

Suffices:

Set pt
where

How to prove geod. convexity of the entropy in (Z(R"), W,)?

LIWA(v, Pip) — WE(v, p)] < Ent(v) — Ent(Pyp)

Take a geodesic from pg =v top1 =p: 0Osps+ V- Vs =0.
= Pstps. Then: pb = v, pl = Pep,  0spt+V - VE=0,

VE= Py V, — tVpl .

t|2
VPtp // dxds

/ / |:‘7)5tv ’2 Vt VPS _ 2‘vp5‘2:| dXdS

Pstps ps

Ps
‘ S‘2d d
s—2t 8 Ent(pl)ds

= W2 (V p) — 2t< Ent(Pep) — Ent(y))
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Geodesic convexity of the quantum entropy

Key ingredients of the proof:

e Intertwining: 0j 0 P; = Pt 0 0;

e Convexity of the function Ry x R" 3 (r,a) — o

Non-commutative analogues for quantum OU:
o 0j 0P = e 8P, 0 0; where A\ = sinh(3/2)
e (R,A) —Tr [/ (t| + e “/2R) T A*(tl + e“/?R) "t Adt
0

is jointly convex on M} x M, for all w € R

Theorem [CARLEN-M. 2016]
Let 5 > 0 and let P; be the quantum OU semigroup. Then:

e The relative entropy Ent(-|og) is geodesically Ag-convex.

o Consequently, Ent(P} plo) < e=2*5t Ent(p|o)



Thank you!



