
Riesz transform without Gaussian heat kernel bound

Li CHEN, ICMAT Madrid

joint work with T. Coulhon, J. Feneuil and E. Russ

Potsdam, August 1, 2017



Setting

M a complete connected non-compact Riemannian manifold.

Let d geodesic distance, µ Riemannian measure, ∇ gradient and ∆ non-negative
Laplace-Beltrami operator.

Let ht(x , y) be the associated kernel of the heat semigroup {e−t∆}t>0:

e−t∆f (x) =

∫
M

ht(x , y)f (y)dµ(y), ∀f ∈ L2(M), a.e. x ∈ M.

ht(x , y) is positive, symmetric in x , y ∈ M and smooth in t > 0, x , y ∈ M.

Let B(x , r) open ball with center x ∈ M and radius r > 0. Denote
V (x , r) := µ(B(x , r)). M satisfies the doubling volume property if

V (x , 2r) ≤ CV (x , r), ∀r > 0, x ∈ M. (D)
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Background of Riesz transform on Riemannian manifolds

Strichartz (1983): For which kind of non-compact Riemannian manifold M and
for which p ∈ (1,∞), there holds ‖|∇f |‖p ' ‖∆1/2f ‖p?

The Riesz transform (formally ∇∆−1/2) is Lp bounded on M if

‖|∇f |‖p ≤ C‖∆1/2f ‖p, ∀f ∈ C∞0 (M), (Rp)

and the reverse inequality is denoted by (RRp).

When p = 2, ‖|∇f |‖2 = ‖∆1/2f ‖2.
By duality, (Rp)⇒ (RRp′), p′ is the conjugate of p.

Well-known results: The Riesz transform is Lp bounded for 1 < p <∞ on

Euclidean spaces Rn

Riemannian manifolds with non-negative Ricci curvature (Bakry,
Littlewood-Paley theory)

Lie groups with polynomial growth endowed with a sublaplacian
(Alexopoulos)
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Gaussian heat kernel estimates and Riesz transform

Theorem (Coulhon, Duong 1999)

Let M be a complete non-compact Riemannian manifold satisfying (D) and

ht(x , y) ≤ C

V (x ,
√
t)

exp
(
− c

d2(x , y)

t

)
, ∀x , y ∈ M, t > 0. (UE )

Then the Riesz transform is of weak type (1, 1) and Lp(M) bounded for 1 < p ≤ 2.

Remarks Under (D) and (UE ), (Rp) may not hold for p > 2.
Examples: manifolds consisting of two copies of Rn\{B(0, 1)} (n ≥ 2) (see
[Coulhon-Duong 1999], [Carron-Coulhon-Hassell 2006] etc).

(D) is not a necessary assumption for (Rp).
Examples: Riemannian manifolds with a spectral gap.

Question: If (D) is assumed, can we replace (UE ) by some other natural heat
kernel estimates like the sub-Gaussian estimates?
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Sub-Gaussian heat kernel estimate

Sub-Gaussian heat kernel upper estimate (UEm):

ht(x , y) ≤ C

V (x , ρ−1(t))
exp (−cG (d(x , y), t)),

where ρ(t) =

{
t2, 0 < t < 1,

tm, t ≥ 1;
and G (r , t) =

{
r2/t, t ≤ r ,

(rm/t)1/(m−1), t ≥ r .

Examples Fractal manifolds. They are built from graphs with a self-similar
structure at infinity by replacing the edges of the graph with tubes and then
gluing the tubes together smoothly at the vertices.

Given any α,m ∈ R+ such that α > 1 and 2 < m ≤ α + 1, there always exist
manifolds satisfying V (x , r) ' rα for r ≥ 1 and (UEm). See for example [Barlow,
Coulhon, Grigor’yan 2001], [Hebisch, Saloff-Coste 2001], [Barlow 2004] etc.



Sub-Gaussian heat kernel estimate

Sub-Gaussian heat kernel upper estimate (UEm):

ht(x , y) ≤ C

V (x , ρ−1(t))
exp (−cG (d(x , y), t)),

where ρ(t) =

{
t2, 0 < t < 1,

tm, t ≥ 1;
and G (r , t) =

{
r2/t, t ≤ r ,

(rm/t)1/(m−1), t ≥ r .

Examples Fractal manifolds. They are built from graphs with a self-similar
structure at infinity by replacing the edges of the graph with tubes and then
gluing the tubes together smoothly at the vertices.

Given any α,m ∈ R+ such that α > 1 and 2 < m ≤ α + 1, there always exist
manifolds satisfying V (x , r) ' rα for r ≥ 1 and (UEm). See for example [Barlow,
Coulhon, Grigor’yan 2001], [Hebisch, Saloff-Coste 2001], [Barlow 2004] etc.



Sub-Gaussian heat kernel estimate

Sub-Gaussian heat kernel upper estimate (UEm):

ht(x , y) ≤ C

V (x , ρ−1(t))
exp (−cG (d(x , y), t)),

where ρ(t) =

{
t2, 0 < t < 1,

tm, t ≥ 1;
and G (r , t) =

{
r2/t, t ≤ r ,

(rm/t)1/(m−1), t ≥ r .

Examples Fractal manifolds. They are built from graphs with a self-similar
structure at infinity by replacing the edges of the graph with tubes and then
gluing the tubes together smoothly at the vertices.

Given any α,m ∈ R+ such that α > 1 and 2 < m ≤ α + 1, there always exist
manifolds satisfying V (x , r) ' rα for r ≥ 1 and (UEm). See for example [Barlow,
Coulhon, Grigor’yan 2001], [Hebisch, Saloff-Coste 2001], [Barlow 2004] etc.



Viscek manifolds
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Figure: Vicsek graph in R2

M Vicsek manifold built in RN with N ∈ N, N ≥ 2. Then V (x , r) ' rD , r ≥ 1,
where D = log3(2N + 1); and

ht(x , y) ≤ C

t
D

D+1

exp
(
− c
(dD+1(x , y)

t

)1/D)
, t ≥ 1.

It also satisfies the non-standard Poincaré inequality:∫
B

|f − fB |2dµ ≤ CrD+1
B

∫
B

|∇f |2dµ, ∀rB ≥ 1, ∀f ∈ C∞0 (M).



Viscek manifolds

Ω0

0

Ω1

0

Ω2

Figure: Vicsek graph in R2

M Vicsek manifold built in RN with N ∈ N, N ≥ 2. Then V (x , r) ' rD , r ≥ 1,
where D = log3(2N + 1); and

ht(x , y) ≤ C

t
D

D+1

exp
(
− c
(dD+1(x , y)

t

)1/D)
, t ≥ 1.

It also satisfies the non-standard Poincaré inequality:∫
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Riesz transform for 1 ≤ p ≤ 2 without Gaussian estimate

Theorem (C., Coulhon, Feneuil, Russ 2017)

Let M be a complete non-compact Riemannian manifold satisfying (D) and
(UEm), then the Riesz transform is weak (1, 1) bounded and Lp bounded for
1 < p ≤ 2.

The strategy for the proof is the same as the Gaussian case in [Coulhon, Duong
1999].

Singular integral techniques developed by Duong and McIntosh;

Weighted estimate for the gradient of the heat kernel (essentially Grigor’yan’s
method for the Gaussian case).

It suffices to prove that for all λ > 0,

µ{x : |∇∆−1/2f | > λ} ≤ C

λ
‖f ‖1.

Formally one can write

∇∆−1/2f =

∫ ∞
0

∇e−t∆f
dt√
t
.
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Using the Calderón-Zygmund decomposition, one can deduce the weak (1, 1)
boundedness to the following estimate: for all y ∈ M, all r , s > 0,

∫
d(x,y)≥r

|∇xhs(x , y)| dµ(x) .


1√
s

exp
(
− c

r2

s

)
, 0 < s < 1,

1√
s

exp
(
− c
( rm

s

)1/(m−1))
, s ≥ 1.

Key ingredients

Chain rule for u(x , t) = ht(x , y):

∆up(x , t) = pup−1(x , t)∆u(x , t)− p(p − 1)up−2(x , t)|∇xu(x , t)|2.

Estimate
∥∥∥ |∇ht(·, y)| exp

(
c
(

dm(x,y)
t

)1/(m−1))∥∥∥
p

for 1 < p < 2, t ≥ 1.
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Riesz transform for p > 2 on Vicsek manifolds

Theorem (C. 2014; C., Coulhon, Feneuil, Russ 2017)

For any Vicsek manifold, (RRp) does not hold for all p ∈ (1, 2). Consequently,
(Rp) does not hold for all 2 < p <∞.

This is an improvement of the result in [Coulhon, Duong 2003], where (RRp)
was shown to be false for 1 < p < 2D

D+1 .

This result shows that the conjunction of (D) and the non-standard Poincaré
inequality does not imply the existence of ε > 0 such that (Rp) holds for
p ∈ (2, 2 + ε).

Corollary (C., Coulhon, Feneuil, Russ 2017)

For any Vicsek manifold. Let 1 < p <∞. Then (Rp) holds if and only if
1 < p ≤ 2 and (RRp) holds if and only if 2 ≤ p <∞.

All our results have their counterparts in the graph setting.
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Idea for the proof
Let M be the Vicsek manifold with the volume growth V (x , r) ' rD , r ≥ 1.
Denote D ′ = 2D

D+1 . Then M satisfies

‖f ‖
1+ p

(p−1)D′
p ≤ Cp‖f ‖

p
(p−1)D′

1 ‖∆1/2f ‖p, ∀f ∈ C∞0 (M) such that
‖f ‖p
‖f ‖1

≤ 1.

Assume that (RRp) is true, hence ‖f ‖
1+ p

(p−1)D′
p ≤ Cp‖f ‖

p
(p−1)D′

1 ‖|∇f |‖p.
Choose {gn}n∈N to contradict the above inequality (from [Barlow, Coulhon,
Grigor’yan 2001]):

Ω2Ω1

z0

zi
0

1/9

2/91/3

4/95/9

2/37/9

8/91

Figure: The function g2 on the diagonal z0zi



Thanks very much!


