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Setup and problem statement

Let M be a connected Riemannian manifold, A — the Laplace-Beltrami
operator on M.
Consider the equation

—Au+ ¢ (x)u’ = f,

where &, f € C (M), f > 0, 0 > 0. Solution u should be non-negative
and in C* (M).
Our goal: pointwise estimates of w.

We always assume that A has a positive Green function G (z,y) on
M, and use notation:

Go @) = [ Gl odu).
The estimates will be given in terms of the function
h=Gf.
Let f #£ 0 so that A > 0. Assume in addition that A < oco.
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Linear case 0 =1

W. Hansen—Z7.Ma 1990, AG-W.Hansen 2008: if & > 0 and
—Au+®(x)u>f on M,
then .
u > hexp <_EG (hCID)) :

where h = G f.
This implies the lower bound for the Green function G¢ of —A + P:
[ G (@,2) G () @ (=) du <z>>
G (z,y)

In the case ® < 0 a similar estimate under additional assumptions was
obtained by N.Kalton—I.Verbitsky 1999.

Go (z.y) > G (2, ) exp (



Main result

Theorem 1 (AG-I.Verbitsky, 2015) Let u > 0 solve —Au+ du® > f in
M. Set h=Gf. Let 0 < h < 0o and let G (h?®) be well defined.

(1) If o =1 then
w> hexp (—%G (h@)) | (1)

(13) If o > 1 then

u> " , 2)

[1 +(o— 1)%(} (hacb)] o

where the expression in square brackets is necessarily positive:

— (0 — D)G(h7®) < h. (3)

(1it) If 0 <o <1 then

w>h [1 . U)%G (1{u>0}h"<1>)} | (4)



Estimates with boundary condition

Fix  — a relatively compact domain in M with smooth boundary. It

suffices to prove (1)-(4) in Q2 with Gg instead of G and with h = Gqf.
New problem: let h € C*(Q) N C (©2) be positive and superharmonic

in Q. Set f = —Ah and assume that v € C*(Q) N C (), u > 0, satisfies

—Au+Pu’ > f inQ and uw>h on Of. (5)

Theorem 2 Under the above condition, we have:
(1) If o =1 then u > hexp (—3Gq (h®)) .
(27) If o0 > 1 then

h
u >

o—1

[1 +(o— 1)%@2 (hU(I))]

where necessarily —(o — 1)Gqo(h°®) < h.
(24i) If 0 < o < 1 then
1 l1—-0o
u > h [1 — (1 — O')EGQ (1{u>0}h0q))]
_|_



Approach to the proof of Theorem 2

Assume for simplicity that « > 0 and h > 0 in . Assume first h = 1.
Then f = —Ah =0 and

—Au+Pu?>0in ), uw>1 on 0.
Fix a C? function ¢ on (a interval of) R with ¢’ > 0 and set
v=9¢"" (u).
By the chain rule we have
Au = A¢ (v) = ¢/ (v)Av + ¢"(v)| Vo],

whence

¢// |Vv|2 B Au ¢//

N o)
¢’ ¢’

mavs F)

= g|Vv|2—<I>

Choose ¢ to solve the initial value problem

¢ (s)=0¢"(s), ¢(0)=1.



Hence, ¢ (s) = e® if o =1, and gb(s):[(l—a)erl]i if 0 # 1.

1/(q-1)

The inverse function ¢! is always defined on (0, 4+00).



The function ¢ is convex, and we obtain from (6)
—Av>—® in Q. (7)
Since on d9Q we have v = ¢~ ' (u) > ¢~ (1) = 0, it follows that
v>—Gqd® in )

and, hence,

This yields the cases (i) — (i7i) of Theorem 2 in the case h = 1.
Indeed, in the case o = 1 we have ¢ (s) = e® and, hence,

u > exp (—Ga?) .
In the case 0 > 1 we have ¢ (s) = [(1 —o)s + 1]_ﬁ, which gives the

estimate of (i7)

u > ! —.
1+ (0 — 1)G®]77

Similarly one treats the case 0 < o < 1.




For a general h > 0, we use the h-transform of A in Q:

1 Ah Ah
h ._ — 2 —
Ali=ooNoh= thlv(hV) - =L+

where

is the weighted Laplacian associated with measure dji = h2dp.

For function @ = % we have
1 1 Ah
A= —ZAu> = (- —he Pt — —.
- h (—Pu’ + f) = u’ :

Setting ® = h~®, we obtain that @ satisfies

~ Ah
—A"i 4+ P > - in €, w>1 on 0f2.

Now we use the same approach as in the case h = 1, but for the operator
A" in place of A.



Set v = ¢ ' (@) = ¢! (u/h) and compute A" as in (6). For the part
L = 75 div (h*V) of the operator A", computation is the same as for A.
The part % gives in the end an additional term so that instead of (7)
we obtain o(0) - 1 AR
~ v) —
—A" > -0 —_— v | —.
vz (%0 0) 5

Multiplying by h, we obtain

— A (hv) > —h7® + <% — U) Ah. (8)

The convexity of ¢ implies

o)1
i =Y ©)

for any s in the domain of ¢. Indeed, if s > 0 then 3¢ € [0, s] such that

b(s) =1 6(s) = 6(0)

S S

=¢'(§) < ¢'(s),




whence (9) follows. If s < 0 then £ € [s, 0] such that
b(5) =1 6(5)—6(0)

S S

=¢'(§) =2 ¢ (s),

which again implies (9) since s < 0.
Since Ah < 0, we obtain

(ot )0

and therefore by (8)
—A (hv) > —h°® in Q.

On 09 we have v = ¢! (u/h) > ¢! (1) = 0, which implies
hv > —Ggq (h?®) in Q.

Dividing by h and applying ¢, we obtain

u > ¢ <_%GQ (h"CI))) in €.
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Existence of positive solutions

Let us ask for which values ¢ > 1 the inequality
Au+u® <0 (10)

has a positive solution u on M (the case of & = —1). For example, in
R™ with n < 2 any non-negative solution of (10) is 0 while for the case
n > 2 (10) has a positive solution if and only if

n
o >

n—2

(Mitidieri and Pohozaev, 1998).
Let d (z,y) be a distance function on M, not necessarily geodesic, but
such that the metric balls

B(x,r)={yeM, d(z,y)<r}.
are precompact open subsets of M. Set

V(z,r)=p(B(x,r)).
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Theorem 3 (AG — Yuhua Sun, 2017) Assume that, for some xo € M,

V(xg,r) = r* for large r (V)
and
G (z,y) ~d(z,y) " for large d(z,y), (G)
where o« > v > 0. Then, for any o satisfying
l<o< g,
Y
the inequality
Au+u’ <0 (11)

has no positive solution in any exterior domain of M.
If in addition d is the geodesic distance, M has bounded geometry,
and (V') holds for all xy € M, then, for any

o
o> —,
Y

the inequality (11) has a positive solution on M.

Hence, the critical value of the exponent o is equal to %
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Example 1

Let I be an infinite connected graph with a uniformly bounded degree.
Let d (x,y) be the graph distance on I' and V' (z, ) — the volume function.
Let the discrete Laplace operator on I' have a positive Green function
G (z,y).

If T" satisfies conditions (V') and (G) for some a and  then we con-
struct a manifold with the same properties by inflating I', that is, by
replacing the edges of I' by 2-dim cylinders. Since M has bounded ge-
ometry, the both parts of Theorem 3 apply in this case.

M.Barlow constructed in 2004 a fractal graph satisfying (V') and (G),
for any pair («, ) such that

O<y<a—2

Since v can be arbitrarily small, the critical value % can be arbitrarily

large, unlike the Euclidean critical value —5.

13



Example 2
Assume that G(z,y) satisfies the following 3G-inequality

miw§0<m;a+aéw)

for all z,y, 2 € M and some C > 1. Then the function p (z,y) = T 1

a pseudo-distance on M. It follows that there exists a distance function
d(z,y) and v > 0 such that

p(z,y) ~d(x,y).

Hence, we obtain
G(x,y) ~d(z,y)™7,

that is, M satisfies (G).
Assume that (M, p) satisfies (V') that is

ply - pla,y) <rpere. (12)
Then, for metric balls B(o,r) with respect to d, we obtain

p(B(z,r)) o~ r7.
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Hence, (M, d) satisfies (V') with & := ay. Assuming in addition that all
balls are precompact, we obtain by Theorem 3 that the critical value of
o is equal to % = Q.
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Idea of the proof of Theorem 3

Assume that u is a positive solution in M \ K of
Au+u’ <0.
For any precompact open set U D K, we have
u > Gge (u?) in U (13)
If u > 0 then the superharmonicity of u implies the estimate
u > cG (-,xp) in US, (14)

for some ¢ > 0. On the other hand, one can prove that, for any precom-
pact open set Q C M,

sup(Au + A (Q)u) > 0,
Q

where \; () is the first Dirichlet eigenvalue of A in Q. It follows that

A () > igf u’ "t
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Combining this with (13) and (14), we obtain

1
M)t zeinl | G (2,9) &7 (g, 20) dp(y).
If o < % then we bring this inequality to contradiction by choosing ()
large enough and by applying the hypotheses (V), (G) to estimate all
the quantities involved.
For the proof of the second part of Theorem 3, we construct a positive
solution of the equation

Au+u® 4+ X f7=0 in M,

where f is a specifically chosen decreasing function and A > 0 is small
enough. This differential equation amounts to the integral equation

ulz) = /M Gl y) (7 () + X F(5)7) du(y).

and the latter is solved in a certain closed subset of L> (M) by observing
that the operator in the right hand side is a contraction for small enough
A. Next, we improve the regularity properties of u in two steps: first
show that u is Holder and then that u € C?.
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