Neumann domains II Ground state property of Neumann domains on the torus

Sebastian Egger (Technion-Israel Institute of Technology) joint work with Ram Band and Alexander Taylor

03.08.2017

Neumann domains on torus

Laplacian eigenfunctions on $\mathbb{T}=\mathbb{R}^2/\mathbb{Z}^2$: $-\Delta\psi_{\mathbf{a},\mathbf{b}}=\lambda_{\mathbf{a},\mathbf{b}}\psi_{\mathbf{a},\mathbf{b}}$

Eigenvalues: $\lambda_{a,b} = \frac{\pi^2}{4} (\frac{1}{a^2} + \frac{1}{b^2}), \quad a = \frac{1}{4m}, \quad b = \frac{1}{4n}, \quad m, n \in \mathbb{N}_0$

Neumann domains for seperable eigenfunctions:

Origin at center of
$$\Omega^{star}_{a,b}$$
: $\psi_{a,b}(x_1,x_2) = \sin\left(\frac{\pi}{2a}x_1\right)\cos\left(\frac{\pi}{2b}x_2\right)$

The result

Definition: ground state property for $\;\Omega^{star/lens}_{a,b}\;$: \Leftrightarrow

- • lowest non-zero eigenvalue of Neumann Laplacian is simple \Rightarrow eigenfunction ψ (mod constant) is called ground state
- $\psi_{a,b}|_{\Omega_{a,b}^{star/lens}}$ is ground state on $\Omega_{a,b}^{star/lens}$

Ground state property depends on $rac{a}{b} \; \Rightarrow \; \mathsf{fix} \; \; a \in \mathbb{R}_+ \; \; \mathsf{and} \; \mathsf{vary} \; \; b \in \mathbb{R}_+$

R. Band, D. Fajman: for every fixed a>0 a $b_0>0$ exists such that: $b< b_0 \ \Rightarrow \ \Omega_{a,b}^{lens}$ does not satisfy ground state property

R. Band, E., A. Taylor: for every fixed a>0 a $b_0>0$ exists such that: $b< b_0 \Rightarrow \Omega^{star}_{a,b}$ does satisfy ground state property

The idea for proving

Symmetry of $\Omega_{a,b}^{star} \Rightarrow \text{ground state is symmetric or antisymetric } i)-iv$

Exclude shape

i): Courant's nodal domain theorem

$$\#\{\text{nodal domains}\} \le n, \quad \lambda_n \quad n-\text{th eigenvalue}$$

 \Rightarrow four nodal domains \not to λ_2 i.e. n=2

ii):

$$\lambda_2^{(N)}(\Omega_{\mathsf{a},b}^{\mathsf{star}}) = \tilde{\lambda}_1^{(D)}(\tilde{\Omega_{\mathsf{a},b}}) \underset{\mathit{monotonicity}}{\sim} \lambda_1^{(D)}(\Omega_{\mathsf{a},b}^{\mathit{star}}) \underset{\mathit{Polya}}{\geq} \lambda_1^{(N)}(\Omega_{\mathsf{a},b}^{\mathit{star}})$$

Exclusion of shape iii)

Equivalent problem:

For every fixed a>0 a $b_0>0$ exists: for all $b< b_0$: $\lambda_1^{(\nu)}<\lambda_1^{(h)}$

Idea: modified rearrangement with sector $S_{r,\alpha}$ as reference system

Find $S_{r,\alpha}$ such that: for all $b < b_0$:

$$\lambda_1^{(v)} < \lambda_1^{(s)} < \lambda_1^{(h)}$$

 \Rightarrow α and r depend on b

The rearrangement

Area of the sector: $|\Lambda_{a,b}|_2 \stackrel{!}{=} |S_{r,\alpha}|_2$

Rearrangement in two steps:

1. rearrangement of sets: $\Lambda_{a,b} \supset \Omega \to \Omega^* \subset S_{r,\alpha}$ such that:

$$|\Omega^*|_2 \stackrel{!}{=} |\Omega|_2$$
 and $\Omega^* = \mathcal{S}_{ ilde{r}, lpha}$

2. rearrangement of $\psi: \Lambda_{a,b} \to \mathbb{R}_0^+$ to $\psi^*: S_{r,\alpha} \to \mathbb{R}_0^+$

$$\psi^*(\mathbf{x}) := \int_0^\infty \chi_{\{\psi > t\}^*}(\mathbf{x}) \, \mathrm{d} \, t, \quad \{\psi > t\} := \{\mathbf{x} \in \Lambda_{\mathsf{a},\mathsf{b}}; \ \psi(\mathbf{x}) > t\}$$

Requirements for rearrangement, a fixed, b small

- i) $\lambda_1^{(v)} < \frac{j_0^2}{c^2} = \lambda_{1.s}$, j_0 first zero of J_0 Bessel function
- ii) for almost all t > 0: $\partial^{N}(\cdot)$ non-Neumann part of boundary

$$|\partial^{N} \{\psi > t\}|_{1} > |\partial^{N} \{\psi^{*} > t\}|_{1},$$

$$ii)$$
+coarea formula $\Rightarrow \|\nabla \psi^*\| \le \|\nabla \psi\| \quad (\|\psi^*\| = \|\psi\| \text{ holds always})$

$$\lambda_1^{(h)} = \inf_{\psi \in H^1_{0,D}(\Lambda_{\mathtt{a},b})} \frac{\|\nabla \psi\|^2}{\|\psi\|^2} \geq \inf_{\psi \in H^1_{0,D}(\Lambda_{\mathtt{a},b})} \frac{\|\nabla \psi^*\|^2}{\|\psi^*\|^2} \geq \inf_{\psi \in H^1_{0,D}(S_{r,\alpha})} \frac{\|\nabla \psi\|^2}{\|\psi\|^2} = \lambda_1^{(s)}$$

- i) \Rightarrow lower bound α_{\min} for α
- ii) \Rightarrow upper bound α_{max} for α

The upper bound $\alpha_{\sf max}$

Relative isoperimetric problem in $\Lambda_{a,b}$: determine

$$\inf_{A\subset\Lambda_{a,b}}\frac{|\partial^N A|_2^2}{2|A|_2}$$

First step: find $\forall \eta > 0$ the minimizing set A_{\min} for $\min_{A \subset \Lambda_{a,b}, \atop A \mid A_{a,b}} |\partial^N A|_1$

Second step: $|A_{\min}| < |\tilde{A}|$, $|\partial^N \tilde{A}| = |\partial^N A_{\min}| > |\partial^N S_{\tilde{r},\varphi}|$, $\varphi > \frac{\pi}{4}$ implies,

$$\frac{|\partial^N A_{\min}|_1^2}{2|A_{\min}|_2} > \frac{|\partial^N S_{\tilde{r},\varphi}|_1^2}{2|S_{\tilde{r},\varphi}|_2} = \varphi > \frac{\pi}{4} := \alpha_{\max}$$

Third step: $|A_{\min}|_2 \stackrel{!}{=} |\{\psi > t\}|_2$, $(|A_{\min}|_2 = |\{\psi > t\}^*|_2)$

$$1 \stackrel{!}{\leq} \frac{|\partial^{\textit{N}} \left\{\psi > t\right\}|_1^2}{|\partial^{\textit{N}} \left\{\psi^* > t\right\}|_1^2} = \frac{|\partial^{\textit{N}} A_{\min}|_1^2}{2|A_{\min}|_2} \frac{2|A_{\min}|_2}{|\partial^{\textit{N}} \left\{\psi^* > t\right\}|_1^2} \geq \frac{\alpha_{\max}}{\alpha}$$

The lower bound α_{\min}

Asymptotics of $|\Lambda_{a,b}|_2$:

$$|\Lambda_{a,b}|_2 \sim \gamma b^2 (1 + O(b)), \quad \gamma \approx 0.6080$$

Ground state of the sector in dependence of $|\Lambda_{\mathsf{a},\mathsf{b}}|_2 = |S_{\mathsf{r},\alpha}|_2$:

$$\begin{split} r &= \sqrt{\frac{2|\Lambda_{a,b}|_2}{\alpha}} \\ \Rightarrow \ \lambda_{1,s} &= \frac{j_0^2 \alpha}{2|\Lambda_{a,b}|_2} \sim \frac{j_0^2 \alpha}{2\gamma b^2} \\ \lambda_{a,b} &= \frac{\pi^2}{4} (\frac{1}{a^2} + \frac{1}{b^2}) \sim \frac{\pi^2}{4} \frac{1}{b^2} \\ \Rightarrow \ \forall \ \alpha > \alpha_{\min} := \frac{\gamma \pi^2}{2j_0^2} \approx 0.1652\pi \quad \exists b_0: \quad \lambda_{a,b} < \lambda_{1,s} \\ \Rightarrow \ \alpha_{\min} < \alpha_{\max} \quad \Rightarrow \quad \mathsf{Claim} \end{split}$$

