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Let us start with a concrete problem:
PME/FDE - Cauchy Problem

op Ou(t,x) = Agu™(t,x) for x € (0,00) x M .
(©P) %ir%u(t,a:) = up(x) for x € M, (1)
e

where the given initial datum wug belongs to L*(M). If ug > 0, we
can think of it as an initial mass.

Remark: Au™ = div(mu™ 'Vu);
D(u) := mu™ " = diffusivity coefficient.

e m > 1: porous medium equation;
e m = 1: heat equation;

e 0 <m < 1: fast diffusion equation (D(u) — oo as u ~ 0).
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FDE weak mass conservation on R?

Proposition (Herrero - 1985)

Let u(t,x) > v(t,x) be weak solutions of the Cauchy-FDE problem
where M = R%. Then, for all R > 0, vy>1landt,s>0

UB [u(t) — v(t)] dx] e [ /B ’ ) oo dx] 1om

Co

O Vol(B,r \ Br)'™™ >0,

and the constant cy > 0 depends only on m and d.

where Mp =
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FDE weak mass conservation on a manifold

Proposition (Bonforte, Grillo, Vazquez - 2008)

Let M be a non-compact, complete and simply connected manifold
with —r* < Sec < 0. Let u(t,z) > v(t,x) be weak solutions of the
Cauchy-FDE problem. Then, forall R >0, v > 1 andt,s >0

1-m 1=m
[ /B [u(®) = ofe) d:z:] < /B ) ) dx]
+ MR,’y|t = S|,
where Mp ~ = (*y——ol)R (01 4F m> Vol(B,r \ Br)'™™ >0,

and the constants ¢y > 0, ¢; > 0, depend only on m and d.
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Is it a good extension?

Question: can we be satisfied with the hypothesis on M or are these
hypothesis too restrictive?
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Is it a good extension?

Let us consider one of the basic example of a noncompact smooth
(manifold) surface: the cylinder Cy = S' x R,
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Is it a good extension? No.

Let us consider one of the basic example of a noncompact smooth
(manifold) surface: the cylinder Cy = S' x R,

Not trivial fundamental
group, I11(C2) = Z

It is not simply connected.
5 0of 18
___



Technical problem: existence of cut-off functions, ¢g,
with controlled gradient and Laplacian decay

Let v € C*(R),0< 1 <1, =1on (—0o0,1], " =0 on [y,00),

6 of 18 Above: a 1d graphic example to construct a cut off ¢g.
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Laplacian cut-off (Euclidean case): properties of ¢r

(i) ¢r: RY = R smooth; (i) 0<¢pr < 1;
(iii) ¢g =1 on Br(0); (iv) suppor C Byr(0);

Gradient and Laplacian decay of ¢ in an Euclidean space
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Laplacian cut-off (Eculidean case): properties of ¢r

(i) ég: R — R smooth; (i) 0<or <1,
(iii) ¢r =1 on Bg(o); (iv) suppor C Byr(0);

Gradient and Laplacian decay of ¢ in an Euclidean space

(V) [Vor(2)]
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Laplacian cut-off (Eculidean case): properties of ¢r

(i) ¢r: R = R smooth; (i) 0< op < 1;
(iii) ¢r =1 on Bg(o); (iv) suppor C Byr(0);

Gradient and Laplacian decay of ¢ in an Euclidean space

C

. C
(V) [Vor(e)| < — (Vi) |Agr(z)| < —
R! k\ R?
e The modulus of the gradient has - dec%
e The modulus of the Laplacian has - decay
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What does happen on a Riemannian manifold?

In local coordinates z*, we have

i Ou 0 0 i~ ou
=qgY —_— A = - v —_—
Vu=g Ox; OxJ U7 O <g g(?ﬂ)

where {g;;} is the matrix of the coefficients of the metric in the
coordinates {z'}, {¢g"/} its inverse and g = det{g;;}.

Let r(x) := dist(z, 0).

Teuclid () is such that:
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What does happen on a Riemannian manifold?

In local coordinates z*, we have

i Ou 0 0 i~ ou
= g¥ e A == n v —
Vu=g Ox; OxJ U7 O <g ﬁ@aﬂ)
where {g;;} is the matrix of the coefficients of the metric in the
coordinates {z'}, {¢g"} its inverse and g = det{g;;}.
Let r(x) := dist(z, 0).

Teuclid () is such that:
® Teuclid 1S smooth;
hd ‘Vreuclid<$)’ =1,

° A”ntauclid(a;) = d-1

Teuclid (517) ’
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What does happen on a Riemannian manifold?

In local coordinates z*, we have
. O0u 0 0 i~ ou
V—— Au=— (99—
g Ox; 07 YT B (g ﬁ&aﬂ)
where {gi;} is the matrix of the coefficients of the metric in the
coordinates {z'}, {¢g"/} its inverse and g = det{g;; }.

Vu=

Let 7y (z) := distys(z, 0).
ra(z) is such that, (in general):
e 1) is smeeth Lipschitz;
o |Vry(z) =1,
L4 ArM(:U) =77
Remark: If M is simply connected and — k2% < Sec < 0 then
Cy

Ary,
0< T‘M(ﬂj) < Ch+ T’M(CL')
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Cut-offs under minimal geometric assumptions: a way
to improve it

Idea:
e No topological assumptions;

e We relax the geometric hypothesis:
—k?% < Secpr <0 — Ricy > —G(r), G € C°([0,00));

9 of 18



Technical tools needed

Crucial fact

Theorem (Li-Yau gradient estimate)

Let M be a complete Riemannian manifold with Ricp; > —(d — 1)x?.
Suppose that w € C*(M) is a solution of

w > 0,
Aw=0 on M,

and Bg(x) is a geodesic ball in M. Then

Vw2 (1+R|&|\*
2 <Oy —7 ont(a}).
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Technical tools needed

Theorem (Gradient estimate, . B., Setti - 2016)

Let Ricpr(+,-) > —(d — 1)G(r)(-,-) on M in the sense of quadratic
forms, where, r = r(z) is the distance function from a fixed point
o€ M.

Let Ry > Ry >0,v>1and let w: M\ Bg,(0) = R be a C*(M)
function satisfying

{w >0 on M\ B, (o), @

Aw = f1(¢) f2(w),

where f1, fo : [0, +00) — R are C' functions and ¢ : M — [0, +00) is
such that |V((z)| < L for every x € M. Moreover, fixt > 0 such
that (1 = t)Rl > Ry. Then...
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V|2 449 + /(4d0,)% + 400
Ve Snmx{(): it + v{ddth) }; (3)

w? o 92

on Byg,(0) \ Brg,(0), where
01 = max{w™ f1(r) f2(w) : @ € B(y41)r, (0) \ Ba—nr, (0)};

A1 - ~ 1 (2 + 4d) A, o
=5 <R1+4(d 1)max{\/5,Rl})+ w7 T2d-1G

+max{2f1(r) max{(w™ fo(w) — f3(w)); 0}
20 L) fo(w)] & € Doy (o)
()3 :=max {w_lL\f{(r)|2(1_)‘)\f2(w)\ 12 € Dyt.ry (0)} 5

and
Dyt R, (0) = F(%th)l%l (0) \B(l—t)R1 (0), A= As(t),
G :=max{G(r) :r € [(1 — t)Ry, (v + t) R1]}.
The parameter A > 0 can be chosen in such a way to minimize the right hand side of (3).
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explanation

The new gradient estimate is more complicated than the original one.
But, if we set

l€2
° G(?') = —(1 +T2)a/2,
e (=,
 hO =
* fo(w) =w,

then we get...
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. a new exhaustion function f(z) =~ —logw(z)

Theorem (B. - Setti 2016)

Let M be a complete, noncompact smooth manifold M with

d—1)k?
Ricy > —M(-, ), € [=2,2]. Then there exists an
r o

exhaustion smooth function f : M — R such that
o Dlrlfo‘/Q(x) < flz) < Dgrlfa/Q(:v);

* Vi@ < —75
o |Af(z)] < .
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Laplacian cut-offs (Riemannian case)

: . _ (=)
Define the metric ball cut-off ¢pr(x) = (W . It holds

0<¢r <1, ¢r =1 on Bgr(o);
supppr C Byr(0);

!

C
< .
|Vog| < i

1"

‘A¢R| < W

In particular, this is true for kK = 0. {¢Rr} are called Laplacian cut-offs.
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FDE weak mass conservation on a manifold, improved

Proposition (B., Setti - 2016)

Let M be a non-compact complete manifold of dimension d with

KZQ

Ricpr(+, ) 2 —(d — 1)m<', )

with k > 0 and « € [—2,2]. Let u(t,z) > v(t,z) be weak solutions of
the Cauchy-FDE problem. Then, for any v > T", and t,s > 0 it holds

[/B (u(t) = v(2)) dx] e [ /B ot dx] 1om

c —m
+ (t— S)Rl—Jr%VoI(B,yR \ Bg)' ™.
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Application: extinction time

Let 7'(ug) be the extinction time of the solution u(t, ) with initial
condition ug(x), namely u(t,z) = 0 for every t > T'(ug). If a =2,
2
namely Ricps(+,-) > —(d — 1)1j_—r2<,> we have
R2

R[l-ﬁ-(@)(d—l)] (1-m) ’

T(UO) 2 C

whence, letting R — 0o, we deduce that T'(ug) = oo if
2
|:1 + (1+V12+4I<,2> (d— 1)i|

Note that, if Ric > 0, so that we can take k = 0, we recover the

m>m.=1—

(4)

Euclidean constant m, =1 — 7
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Others applications on Riemannian manifolds

B

B

Essential self-adjointness of Schrodinger-type operators;
Gagliardo-Niremberg-type L9-estimates for the gradient;
Properties of PME/FDE solutions of the Cauchy problem:
existence and uniqueness with L*(M) initial datum, L'
contractivity, conservation of mass, Aronson-Bénilan estimates;

PME with "big” data, i.e., ug € L}, .(M).

D. Bianchi and A. Setti,

Laplacian cut-offs, porous and fast diffusion equation and other
applications

ArXiv 1607.06008

B. Giineysu,
Sequences of Laplacian cut-off functions
J. Geom. Anal. 26.1 (2016): 171-184.

18 of 18



