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Abstract

We consider a non self-adjoint Laplacian on a directed graph with

non symmetric edge weights. We analyse spectral properties of this

Laplacian under a Kirchho�'s assumption. Moreover we establish

isoperimetric inequalities in terms of the numerical range to show

the absence of the essential spectrum of our Laplacian.
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Notion of graphs

We call oriented or directed graph, the couple G = (V , ~E ), where
V is a countable set of vertices, and ~E ⊂ V ×V is a set of directed

edges. For two vertices x , y of V , we denote by (x , y) the edge

that connects x to y , we also say that x and y are neighbors.
For all x ∈ V , we set:

The edge (x , x) is called a loop.

V+
x =

{
y ∈ V , (x , y) ∈ ~E

}
V−x =

{
y ∈ V , (y , x) ∈ ~E

}
Vx = V+

x ∪ V−x . G is locally �nite if for all x ∈ V ,

#Vx <∞.

5



Graphs and operators
Cheeger inequality

Absence of essential spectrum by Cheeger Theorem

Functional spaces
Non self-adjoint Laplacians
Assumption (β) and overview on Laplacians
Numerical range and applications

Example of a directed graph

Transport network
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A path between two vertices x and y in V is a �nite set of directed

edges (x1, y1); (x2, y2); ..; (xn, yn), n ≥ 2 such that

x1 = x , yn = y and xi = yi−1 ∀ 2 ≤ i ≤ n.

G = (V , ~E ) is called connected if two vertices are always

related by a path.

G = (V , ~E ) is called strongly connected if for all vertices x , y
there is a path from x to y and one from y to x .
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In this work, we suppose that G is without loops, locally �nite,

connected and satisfy:

∀x ∈ V , #V+
x 6= 0 et #V−x 6= 0.

We de�ne a weighted graph

De�nition

Weighted graph: A directed weighted graph is a triple (G ,m, b) ,
where G is a directed graph, m : V → R∗+ is a weight on V and
b : V ×V → [0,∞) is a weight satisfying the following conditions:

b(x , x) = 0 for all x ∈ V

b(x , y) > 0 i� (x , y) ∈ ~E

The graph (G ,m, b) is called symmetric if for all x , y ∈ V ,

b(x , y) = b(y , x).
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C(V ) = {f : V → C}
Cc(V ) is its subset of �nite supported functions.

The Hilbert space

`2(V ,m) = {f ∈ C(V ),
∑
x∈V

m(x)|f (x)|2 <∞}

endowed with the following inner product:

(f , g)m =
∑
x∈V

m(x)f (x)g(x).
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Laplacian and Dichlet Laplacian:

For a weighted connected directed graph (V , ~E , b), we introduce

the combinatorial Laplacians:

We de�ne the Laplacian ∆ on Cc(V ) by:

∆f (x) =
1

m(x)

∑
y∈V+

x

b(x , y)
(
f (x)− f (y)

)
.

The Dirichlet Laplacian ∆D
U , where U is a subset of V , is

de�ned for f ∈ Cc(U) and g : V → C the extension of f to V
by setting f = 0 outside U by:

∆D
U (f ) = ∆(g)|U .
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Adjoint of operator A with domain D(A)

Proposition

A formal adjoint of ∆ is the operator ∆′ de�ned on Cc(V ) by:

∆′f (x) =
1

m(x)

∑
y∈V

b(x , y)f (x)−
∑
y∈V

b(y , x)f (y)

 .

The operator ∆′ can be expressed as a Schrödinger operator with

potential q(x) =
1

m(x)

∑
y∈V

(
b(x , y)− b(y , x)

)
, x , y ∈ V

∆′f (x) =
1

m(x)

∑
y∈V

b(y , x)
(
f (x)− f (y)

)
+ q(x)f (x).
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We introduce the Assumption (β)

The Assumption (β) consists on :

for all x ∈ V , β+(x) = β−(x).

The Assumption (β) is natural, it looks like the Kirchho�'s law in

the electrical networks.
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Corolary

If the Assumption (β) is satis�ed, then

∀f ∈ Cc(V ), ∆′f (x) =
1

m(x)

∑
y∈V

b(y , x)
(
f (x)− f (y)

)
.

Commentaire

The domain of the adjoint ∆∗ of ∆ is given by:

D(∆∗) =
{
f ∈ `2(V ,m), ∆′f (x) ∈ `2(V ,m)

}
.
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Lemma

( Green formula) We suppose that f and g are two founctions of
Cc(V ). Then

(∆f , g)m + (∆g , f )m =
∑

(x ,y)∈~E

b(x , y)
(
f (x)− f (y)

)(
g(x)− g(y)

)
.
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De�nition

The numerical range of an operator T with domain D(T ), denoted
by W (T ) is the non-empty set

W (T ) = {(Tf , f ), f ∈ D(T ), ‖ f ‖= 1}.

Proposition

∆ is a closable operator.

Commentaire

The closure of ∆ is the operator ∆ whose domain and action are

D(∆) =
{
f ∈ `2(V ,m), ∃ (fn)n∈N ∈ Cc(V ), fn →

f and (∆fn)n converge
}

∆fn → ∆f , f ∈ D(∆).
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Isoperimetric constants

We de�ne the Cheeger constants on Ω ⊂ V :

h(Ω) = inf
U⊂Ω
�nite

b(∂EU)

m(U)
et h̃(Ω) = inf

U⊂Ω
�nite

b(∂EU)

β+(U)

we de�ne in addition

mΩ = inf

{
β+(x)

m(x)
, x ∈ Ω

}

MΩ = sup

{
β+(x)

m(x)
, x ∈ Ω

}
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The edge boundary

De�ne for a �nite subset U of V , the edge boundary of U

∂EU =
{

(x , y) ∈ ~E : (x ∈ U, y ∈ Uc) or (x ∈ Uc , y ∈ U)
}

its measure is given by:

b(∂EU) =
∑

(x ,y)∈∂EU

b(x , y).
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The Cheeger Theorem

Theorem

Let Ω ⊂ V , the bottom of the real part of W (∆D
Ω) satis�es the

following control:

h2(Ω)

8
≤ MΩν(∆D

Ω) ≤ MΩh(Ω) (1)

Proposition

mΩ
h̃2(Ω)

8
≤ ν(∆D

Ω). (2)
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The essential spectrum σess of a closed operator A is: the set of all

complex numbers for which the range R(A− λ) is not closed or

R(A− λ) is closed and dim ker(A− λ) =∞.

De�nition

A �ltration of G = (V , ~E ) is a sequence of �nite connected
subgraphs {Gn = (Vn, ~En), n ∈ N} such that Gn ⊂ Gn+1 and:⋃

n≥1
Vn = V .

Let us denote

m∞ = lim
n→∞

mV c
n

M∞ = lim
n→∞

MV c
n

The Cheeger constant at in�nity is de�ned by:

h∞ = lim
n→∞

h(V c
n ).
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ηess(∆) = inf{Reλ : λ ∈ σess(∆)}.

Theorem

The essential spectrum of ∆ satis�es:

h2∞
8
≤ M∞η

ess(∆)

and

m∞
h̃2∞
8
≤ ηess(∆). (3)
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De�nition

G is called with heavy ends if m∞ =∞.

Theorem

The essential spectrum of ∆ on a heavy end graph G with h̃∞ > 0,
is empty.
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Thank you for your attention
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