うして ふゆ く は く は く む く し く

Number-Rigidity and β -Circular Riesz Gas

David Dereudre

(joint work with Thibaut Vasseur) Laboratoire de Mathématiques Paul Painlevé, University of Lille, France

Research Seminar in Probability Theory, May 2023, Potsdam

うして ふゆ く は く は く む く し く

Introduction

• Gibbs point process on \mathbb{R}^d interacting with the Riesz pair potential

$$g(x) = \frac{1}{|x|^s}$$
 $d-1 < s < d$

- g is non-integrable at infinity, ∇g is integrable.
- canonical ensemble with constant density $\rho > 0$ and inverse temperature $\beta > 0$.
- periodic boundary condition
- number-rigidity and equivalence of ensembles

1 The Model

2 Number-Rigidity

3 Equivalence of ensembles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The Riesz energy with background

$$\gamma = \{x_1, \dots, x_n\} \text{ included } \Lambda_n = [-n^{1/d}/2, n^{1/d}/2]^d$$
$$H(\gamma) = \sum_{\{x,y\} \in \gamma} g(x-y) = \frac{1}{2} \int \int_{\mathbb{R}^d \setminus \text{Diag}} g(x-y) \gamma(dx) \gamma(dy).$$

 γ

The Riesz energy with background

$$T = \{x_1, \dots, x_n\} \text{ included } \Lambda_n = [-n^{1/d}/2, n^{1/d}/2]^d$$
$$H(\gamma) = \sum_{\{x,y\} \in \gamma} g(x-y) = \frac{1}{2} \int \int_{\mathbb{R}^d \setminus \text{Diag}} g(x-y)\gamma(dx)\gamma(dy).$$

With the background on Λ_n

$$\tilde{H}_n(\gamma) = \frac{1}{2} \int \int_{\Lambda_n \setminus \text{Diag}} g(x - y)(\gamma(dx) - dx)(\gamma(dy) - dy).$$

The energy $\tilde{H}_n(\gamma)$ is of order n (the volume).

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ ・ り へ の ト

The periodic Riesz energy

For $k \geq 1$, γ^k is the concatenation of (2k+1) copies of γ in the translations of Λ_n . It is a configuration in $\Lambda_{(2k+1)^d n}$.

w

うして ふゆ く は く は く む く し く

The periodic Riesz energy

For $k \geq 1$, γ^k is the concatenation of (2k+1) copies of γ in the translations of Λ_n . It is a configuration in $\Lambda_{(2k+1)^d n}$.

Proposition

$$\lim_{k \to \infty} \frac{\tilde{H}_{\Lambda_{(2k+1)d_n}}(\gamma^k)}{(2k+1)^d} = \sum_{\{x,y\} \in \gamma} g_n(x-y) + n\varepsilon_n$$

ith $g_n(x) = \sum_{k \in \mathbb{Z}^d} (g(x+kn^{1/d}) - \frac{1}{n} \int_{\Lambda_n} g(y+kn^{1/d}) dy).$

For all $x \in \Lambda_n$, $|g_n(x) - g(x)| \le Cn^{-s/d}$.

The periodic Riesz energy

For $k \geq 1$, γ^k is the concatenation of (2k+1) copies of γ in the translations of Λ_n . It is a configuration in $\Lambda_{(2k+1)^d n}$.

Proposition

$$\lim_{k \to \infty} \frac{\tilde{H}_{\Lambda_{(2k+1)^d_n}}(\gamma^k)}{(2k+1)^d} = \sum_{\{x,y\} \in \gamma} g_n(x-y) + n\varepsilon_n$$

with $g_n(x) = \sum_{k \in \mathbb{Z}^d} (g(x + kn^{1/d}) - \frac{1}{n} \int_{\Lambda_n} g(y + kn^{1/d}) dy).$

For all $x \in \Lambda_n$, $|g_n(x) - g(x)| \le Cn^{-s/d}$.

Definition

The periodic Riesz energy of γ in Λ_n is defined by

$$H_n(\gamma) = \sum_{\{x,y\} \subset \gamma} g_n(x-y).$$

Number-Rigidity

Properties of g_n

$$g_n(x) = \sum_{k \in \mathbb{Z}^d} (g(x + kn^{1/d}) - \frac{1}{n} \int_{\Lambda_n} g(y + kn^{1/d}) dy).$$

Proposition

- (Stability) There exists a constant A ≥ 0 such that for point configuration γ ∈ Λ_n such that |γ| = n, we have H_n(γ) ≥ -An.
- (Shift invariance) For every $u \in \Lambda_n$ and every configuration γ in Λ_n we have $H_n(\tau_u^n(\gamma)) = H_n(\gamma)$.
- (Approximation) There exists a constant c > 0 such that for every point x ∈ Λ_n we have

$$|g_n(x) - g(x)| \le cn^{-s/d}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

The canonical ensemble

 $\operatorname{Bin}_{\Lambda,n}$ is the distribution of n independent points uniformly distributed in Λ .

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

The canonical ensemble

 $\operatorname{Bin}_{\Lambda,n}$ is the distribution of *n* independent points uniformly distributed in Λ .

Definition

The canonical Gibbs measure in Λ_n with inverse temperature $\beta > 0$ is

$$P_n^{\beta} = \frac{1}{Z_n^{\beta}} e^{-\beta H_n} \operatorname{Bin}_{\Lambda_n, n}.$$

The canonical ensemble

 $\operatorname{Bin}_{\Lambda,n}$ is the distribution of *n* independent points uniformly distributed in Λ .

Definition

The canonical Gibbs measure in Λ_n with inverse temperature $\beta > 0$ is

$$P_n^{\beta} = \frac{1}{Z_n^{\beta}} e^{-\beta H_n} \operatorname{Bin}_{\Lambda_n, n}.$$

Theorem

The sequence $(P_n^{\beta})_{n\geq 1}$ admits accumulation points for the local convergence topology. They are called β -circular Riesz gases.

Uniqueness or non-uniqueness of accumulation points is unknown.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Main arguments of the proof

• The energy is stable : For any γ such that $\#(\gamma) = n$

$$H_n(\gamma) \ge -An.$$

• The partition function : There exists $0 < a_{\beta} < b_{\beta} < +\infty$

$$a_{\beta}^n \le Z_n^{\beta} \le b_{\beta}^n.$$

• The relative entropy is uniformly bounded

$$I(P_n^\beta | \pi_{\Lambda_n}) / |\Lambda_n| \le C.$$

• P_n^{β} is stationary on the torus Λ_n .

Connections with other models

- Hardin, Saff and Simanek (2014) : Periodic energy of a crystal
- Physicists : Periodic jellium (s = d 2)
- Leblé-Serfaty (2017) : LDP with confining potential
- Valko,Virag (2009), Killip-Stoiciu (2009), Nakano (2014) beta-circular ensembles and the Sine- β process (s = 0, d = 1)
- Boursier (2022) : Riesz gas on the circle (0 < s < 1, d = 1)
- Lewin (2022) : Survey on Riesz gas

2 Number-Rigidity

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

Number-Rigidity

Definition (Ghosh-Peres 2017)

A point process Γ in \mathbb{R}^d is said number-rigid if for any bounded set $\Lambda \subset \mathbb{R}^d$ there exists a function F_{Λ} such that almost surely

 $\#\Gamma_{\Lambda} = F_{\Lambda}(\Gamma_{\Lambda^c}).$

Are the β -circular gases number-rigid?

Number-Rigidity

Definition (Ghosh-Peres 2017)

A point process Γ in \mathbb{R}^d is said number-rigid if for any bounded set $\Lambda \subset \mathbb{R}^d$ there exists a function F_{Λ} such that almost surely

 $\#\Gamma_{\Lambda} = F_{\Lambda}(\Gamma_{\Lambda^c}).$

Are the β -circular gases number-rigid? Previous works for Gibbs point process :

- s > d summable potential : Non number-rigidity (grand canonical DLR equations)
- s = 0, d = 2 and $\beta = 2$: Number-Rigidity (DPP structure + linear statistics), Ghosh-Lebowitz 2017
- s = 0, d = 1 and $\beta > 0$: Number-Rigidity (canonical DLR equations or linear statistics), D.-Leblé-Hardy-Maïda 2019 or Chhaibi-Najnudel 2018.

One point deletion

Definition (Holroyd-Soo 2013)

A point process Γ in \mathbb{R}^d is said one-point deletion if for any random variate $X \subset \Gamma$ the distribution of $\Gamma \setminus X$ is absolutely continuous with respect to Γ .

"Non number-rigidity" and "One point deletion" are almost equivalent.

うして ふゆ く は く は く む く し く

One point deletion

Definition (Holroyd-Soo 2013)

A point process Γ in \mathbb{R}^d is said one-point deletion if for any random variate $X \subset \Gamma$ the distribution of $\Gamma \setminus X$ is absolutely continuous with respect to Γ .

"Non number-rigidity" and "One point deletion" are almost equivalent.

Heuristically, for Gibbs point processes and if X is "typical"

$$\frac{P_{\Gamma}}{P_{\Gamma \setminus X}} \sim e^{-\beta h(X, \Gamma \setminus X)}.$$

The one point deletion property requires a good definition for

$$h(X, \Gamma \backslash X).$$

The energy of a point

Let $x \in \mathbb{R}^d$ and γ an infinite configuration $(x \notin \gamma)$. Three candidates for $h(x, \gamma)$:

$$h_1(x,\gamma) = \sum_{y \in \gamma} \frac{1}{|x-y|^s} = \int \frac{1}{|x-y|^s} \gamma(dy)$$
$$h_2(x,\gamma) = \lim_{n \to \infty} \int_{\Lambda_n} \frac{1}{|x-y|^s} (\gamma(dy) - dy)$$
$$h_3(x,\gamma) = \lim_{n \to \infty} \left(\int_{\Lambda_n} \frac{1}{|x-y|^s} \gamma(dy) - C_n(\#\gamma_{\Lambda_n},\gamma_{\Lambda_n^c}) \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

The main result

Theorem

For any $\beta > 0$, there exists a β -circular Riesz gas P_{\star}^{β} which is not number-rigid. P_{\star}^{β} is also one-point deletion.

 $P_{\star}^{\beta} = \lim_{k \to \infty} P_{n_k}^{\beta}$ for a subsequence (n_k) . We believe that all β -circular Riesz gas are not number-rigid.

うして ふゆ く は く は く む く し く

The main result

Theorem

For any $\beta > 0$, there exists a β -circular Riesz gas P_{\star}^{β} which is not number-rigid. P_{\star}^{β} is also one-point deletion.

 $P_{\star}^{\beta} = \lim_{k \to \infty} P_{n_k}^{\beta}$ for a subsequence (n_k) . We believe that all β -circular Riesz gas are not number-rigid.

Corollary

For any bounded Λ and $k \geq 0$ then for all P_{\star}^{β} -a.s. γ ,

$$P^{\beta}_{\star}(N_{\Lambda}=k|\gamma_{\Lambda^c})>0.$$

Main ingredient of the proof

Proposition

For any $\beta > 0$, there exists a constant K > 0 and an subsequence $(n_k)_{k \ge 1}$ such that for all $k \ge 1$

$$\int |h_{n_k}(0,\gamma)| P_{n_k}^\beta(d\gamma) \le K,$$

where

$$h_n(x,\gamma) = \sum_{y \in \gamma} g_n(x-y),$$

$$g_n(x) = \sum_{k \in \mathbb{Z}^d} (g(x + kn^{1/d}) - \frac{1}{n} \int_{\Lambda_n} g(y + kn^{1/d}) dy).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Number-Rigidity

General principle

Canonical ensembles : The density of particles $\rho > 0$ is prescribed. In the thermodynamic limit $(\Lambda_n \to \infty)$ the number of particles is fixed equal to $\rho |\Lambda_n|$.

うして ふゆ く は く は く む く し く

General principle

Canonical ensembles : The density of particles $\rho > 0$ is prescribed. In the thermodynamic limit $(\Lambda_n \to \infty)$ the number of particles is fixed equal to $\rho |\Lambda_n|$.

Grand canonical ensembles : The activity z > 0 (or the chemical potential μ) is prescribed ($z = e^{-\beta\mu}$). During the thermodynamic limit ($\Lambda_n \to \infty$) the number of particles is random. The Gibbs process is absolutely continuous with respect to the Poisson point process with intensity z > 0.

Number-Rigidity

General principle

Canonical ensembles : The density of particles $\rho > 0$ is prescribed. In the thermodynamic limit $(\Lambda_n \to \infty)$ the number of particles is fixed equal to $\rho |\Lambda_n|$.

Grand canonical ensembles : The activity z > 0 (or the chemical potential μ) is prescribed ($z = e^{-\beta\mu}$). During the thermodynamic limit ($\Lambda_n \to \infty$) the number of particles is random. The Gibbs process is absolutely continuous with respect to the Poisson point process with intensity z > 0.

Definition (Equivalence of ensembles)

The canonical ensembles and the grand canonical ensembles are the same. There exist functions $\rho \mapsto z_{\rho}$ and $z \mapsto z_{\rho}$.

The equivalence of ensembles is proved for a large class of summable pairwise potentials (Ruelle 70, Georgii 94, Vasseur 2012), including the Riesz potential for s > d.

The Model

Number-Rigidity

Equivalence of ensembles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Equivalence of ensembles with the DLR formalism

• A canonical ensemble *P* satisfies the canonical DLR (Dobrushin-Lanford-Ruelle) equations :

$$P(d\gamma_{\Lambda}|\#\gamma_{\Lambda}=k,\gamma_{\Lambda^c})=\frac{1}{Z_{\Lambda}^{\beta}(k,\gamma_{\Lambda^c})}e^{-\beta H(\gamma_{\Lambda}|\gamma_{\Lambda^c})}\mathrm{Bin}_{\Lambda,k}(d\gamma_{\Lambda}).$$

Equivalence of ensembles with the DLR formalism

• A canonical ensemble *P* satisfies the canonical DLR (Dobrushin-Lanford-Ruelle) equations :

$$P(d\gamma_{\Lambda}|\#\gamma_{\Lambda}=k,\gamma_{\Lambda^c})=\frac{1}{Z_{\Lambda}^{\beta}(k,\gamma_{\Lambda^c})}e^{-\beta H(\gamma_{\Lambda}|\gamma_{\Lambda^c})}\mathrm{Bin}_{\Lambda,k}(d\gamma_{\Lambda}).$$

• A grand canonical ensemble *P* satisfies the grand canonical DLR equations :

$$P(d\gamma_{\Lambda}|\gamma_{\Lambda^c}) = \frac{1}{Z_{\Lambda}^{\beta}(\gamma_{\Lambda^c})} e^{-\beta H(\gamma_{\Lambda}|\gamma_{\Lambda^c})} \pi_{\Lambda}^z(d\gamma_{\Lambda}).$$

Equivalence of ensembles with the DLR formalism

• A canonical ensemble *P* satisfies the canonical DLR (Dobrushin-Lanford-Ruelle) equations :

$$P(d\gamma_{\Lambda}|\#\gamma_{\Lambda}=k,\gamma_{\Lambda^c})=\frac{1}{Z_{\Lambda}^{\beta}(k,\gamma_{\Lambda^c})}e^{-\beta H(\gamma_{\Lambda}|\gamma_{\Lambda^c})}\mathrm{Bin}_{\Lambda,k}(d\gamma_{\Lambda}).$$

• A grand canonical ensemble *P* satisfies the grand canonical DLR equations :

$$P(d\gamma_{\Lambda}|\gamma_{\Lambda^c}) = \frac{1}{Z_{\Lambda}^{\beta}(\gamma_{\Lambda^c})} e^{-\beta H(\gamma_{\Lambda}|\gamma_{\Lambda^c})} \pi_{\Lambda}^z(d\gamma_{\Lambda}).$$

Definition (Equivalence of ensembles)

If P satisfies the canonical DLR equations then P satisfies the grand canonical DLR equations.

The Model

Number-Rigidity

Equivalence of ensembles

Canonical DLR equations for β -circular Riesz gas

The energy to move a particle from 0 to x in γ is

$$M(x|\gamma) = \sum_{y \in \gamma} g(x - y) - g(y).$$

Theorem (Canonical DLR equations)

Let \mathbb{P}^{β} be a β -Circular Riesz gas, Λ be a bounded Borel subset of \mathbb{R}^{d} . Then for P^{β} a.e. γ

$$P^{\beta}(d\gamma_{\Lambda}|\#\gamma_{\Lambda}=k,\gamma_{\Lambda^{c}})=\frac{1}{Z^{\beta}_{\Lambda}(k,\gamma_{\Lambda^{c}})}e^{-\beta H(\gamma_{\Lambda}|\gamma_{\Lambda^{c}})}Bin_{\Lambda,k}(d\gamma_{\Lambda}).$$

where
$$H(\gamma_{\Lambda}|\gamma_{\Lambda^c}) = \sum_{\{x,y\}\subset\gamma_{\Lambda}} g(x-y) + \sum_{x\in\gamma_{\Lambda}} M(x|\gamma_{\Lambda^c}).$$

Similar proof as D.,Leblé,Hardy and Maïda for the Sine- β process.

Grand canonical DLR equations for P_{\star}^{β}

Based on the one-point deletion property of P_{\star}^{β}

Theorem (Grand canonical DLR equations)

Let Λ be a bounded Borel subset of \mathbb{R}^d . Then for P^{β}_{\star} a.e. γ

$$P^{\beta}_{\star}(d\gamma_{\Lambda}|\gamma_{\Lambda^{c}}) = \frac{1}{Z^{\beta}_{\Lambda}(\gamma_{\Lambda^{c}})} e^{-\beta H(\gamma_{\Lambda}|\gamma_{\Lambda^{c}})} \pi_{\Lambda}(d\gamma_{\Lambda}).$$

where $\gamma_{\Lambda} = \{x_1, x_2, \dots, x_k\}$ and

 $H(\gamma_{\Lambda}|\gamma_{\Lambda^c}) = h(x_1,\gamma_{\Lambda^c}) + h(x_2,x_1 \cup \gamma_{\Lambda^c}) + \ldots + h(x_2,x_1 \cup \ldots \cup x_{k-1} \cup \gamma_{\Lambda^c})$

$$h(x,\gamma) = \lim_{n \to \infty} \left(\sum_{y \in \gamma_{\Lambda_n}} g(x-y) - C_n(\#\gamma_{\Lambda_n},\gamma_{\Lambda_n^c}) \right).$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 三 ののの

Integral compensator

$$h(x,\gamma) = \lim_{n \to \infty} \left(\sum_{y \in \gamma_{\Lambda_n}} g(x-y) - C_n(\#\gamma_{\Lambda_n}, \gamma_{\Lambda_n^c}) \right).$$

We believe that the integral compensator works

$$C_n(\#\gamma_{\Lambda_n},\gamma_{\Lambda_n^c}) = \int_{\Lambda_n} g(y) dy$$

Proposition

If P^{β} is hyperuniform with $Var(N_{\Lambda}) \leq C|\Lambda|^{s/d-\varepsilon}$ then the grand canonical DLR equations hold with

$$h(x,\gamma) = \lim_{n \to \infty} \left(\sum_{y \in \gamma_{\Lambda_n}} g(x-y) - \int_{\Lambda_n} g(y) dy \right).$$

It is the case for d = 1, Boursier 2022.

うせん 同一 不明々 不明々 不同々 不日々

The Model

Number-Rigidity

Summary of the talk

- We define infinite volume Riesz gases (d − 1 < s < d) in ℝ^d at inverse β > 0 with periodic boundary conditions.
- At least one of them P^{β}_{\star} is not number Rigid.
- P_{\star}^{β} satisfies canonical and grand canonical DLR equations.
- The energy of a point x in γ exists

$$h(x,\gamma) = \lim_{n \to \infty} \left(\sum_{y \in \gamma_{\Lambda_n}} g(x-y) - C_n(\#\gamma_{\Lambda_n},\gamma_{\Lambda_n^c}) \right).$$

• If $d = 1, P_{\star}^{\beta}$ is hyperuniform and so

$$h(x,\gamma) = \lim_{n \to \infty} \left(\sum_{y \in \gamma_{\Lambda_n}} g(x-y) - \int_{\Lambda_n} g(y) dy \right)$$

• We believe that the same hold for all $d \geq 2$.

うして ふゆ く は く は く む く し く

Open questions

- Hyperuniformity and integral compensator for $d \ge 2$.
- DLR equations for $s \le d-1$?
- Does the Number-Rigidity property appear at s = d 1, s = 0? (true for d = 1)
- Is it really possible to have Number-Rigidity for large d?