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Preface

This text is based on lecture notes of various courses on General Relativity which I taught over

the time. Unlike in many texts on the topic, differential geometry is not developed but assumed.

There are many good introductions to this beautiful part of mathematics so that we prefer to

concentrate on the actual topic - relativity. The first chapter, dealing with special relativity, does

not yet assume any differential geometric background, thus giving the reader the option to learn

about Lorentzian manifolds, curvature, gedesics etc. on the side.

The chapter on Special Relativity briefly recalls classical kinematics and electrodynamics em-

phasizing their conceptual incompatibility. It is then shown how Minkowski geometry is used

to unite the two theories and to obtain what we nowadays call Special Relativity. Some famous

phenomena like length contraction, time dilation, and the twin paradox are discussed. Relativis-

tic velocity addition is investigated using hyperbolic geometry.

We then incorporate gravity by replacing Minkowski space by a more general Lorentzian man-

ifolds whose curvature reflects the graviational field. This is made precise by Einstein’s field

equations and this is where differential geometry comes into play.

We then move on to the first concrete models: Robertson-Walker spacetimes are models for the

whole universe on a large scale. They are used to discuss cosmic redshift, the expansion of the

universe, big bang and big crunch. We also briefly discuss cosmological inflation, a phase of

rapid expansion of the early universe.

The next chapter studies models for black holes, first static ones described by the Schwarzschild

solution, then rotating ones modeled by the more general and more complicated Kerr solution.

We discuss the trajectories of massive particles and of light and see how they differ from the

classical orbits. The Kerr solution has a rich geometry and allows for time travel.

We then study gravitational waves and discuss ways to construct mathematical solutions. Finally,

the Petrov classification is developed which is a way to sort spacetime models by algebraic

properties of their curvature tensors.

General relativity requires a lot of computation in explicit models which can sometimes be

cumbersome because of the advanced nature of differential geometry. It is reasonable to delegate

this to a computer algebra system if possible. The general purpose CAS Sage has very good

support for differential geometry and is used in the text in many places. It is recommended that

the readers familiarize themselves with this wonderful (and free) piece of software.

It is my pleasure to thank all those who helped to improve the manuscript by suggestions, cor-

rections or by work on the LATEX code. My particular thanks go to Andrea Röser who wrote

the first version of a part of the text in German language and created many pictures in wonder-

ful quality, to Matthias Ludewig who translated this part of the manuscript into English and to

Andreas Hermann who wrote the text for the advanced part.

Potsdam, March 2023

Christian Bär





1. Special relativity

Before starting with relativity theory we will briefly recall two older theories in physics, New-

ton’s classical mechanics and Maxwell’s electromagnetism theory. These two theories are in-

compatible in the sense that their laws transform differently under coordinate changes. This

incompatibility was one of Einstein’s main motivations to seek a theory that would combine the

two. Einstein found a unification of mechanics and electromagnetism, now known under the

term special relativity theory. In a way, Maxwell defeated Newton, as the transformation laws

of special relativity are those of electrodynamics. The laws of Newtonian mechanics are only

valid approximately at low velocities.

1.1. Classical kinematics

1.1.1. Absolute space

In Sir Isaac Newton’s (1643-1727) world, space exists independently of all the objects contained

in it. In his own words:

Absolute space, in its own nature, without regard to anything external, remains always similar

and immovable.

The geometry of space is assumed to be Euclidean, i.e., it is

assumed that the laws of Euclidean geometry hold for mea-

surements performed in physical space. In other words, we

can introduce Cartesian coordinates to identify space with R3

and then apply the usual rules of Cartesian geometry,

absolute space
identify
←−−−−→ R

3.

Such a coordinate system is not unique but the Euclidean struc-

ture is invariant under coordinate transformations of the form

Φ : R3 → R3, Φ(x) = Ax + b,
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Figure 1.. Godfrey Kneller’s

portrait of Isaac Newton (1689)

with A ∈ O(3), i.e., A⊤A = I, and b ∈ R3. The set of all such transformations is called the

Euclidean transformation group.

It should be emphasized that such an assumption requires empirical justification. Indeed, mea-

surements performed in every-day-life support Newton’s ideas about space; if you measure the

sum of angles in a triangle it will give 180 degrees to very high precision and is thus in accor-

dance with Euclidean geometry.

https://exhibitions.lib.cam.ac.uk/linesofthought/artifacts/newton-by-kneller
https://exhibitions.lib.cam.ac.uk/linesofthought/artifacts/newton-by-kneller


2 1. Special relativity

1.1.2. Absolute time

Newton’s ideas about time are similar to those about space:

Absolute, true and mathematical time, of itself, and from its own nature flows equably without

regard to anything external.

From a mathematical point of view, this means that we can measure time by a real parameter

absolute time
identify
←−−−−→ R.

More precisely, we fix a time interval, e.g., a second, and we then measure time in real multiples

of this chosen time unit. The resulting identification of absolute time with R is unique up to

transformations of the form

R→ R, t 7→ t + t0,

with some fixed t0 ∈ R. Since we can distinguish future and past, we do not admit transforma-

tions of the form R→ R, t 7→ −t + t0, where t0 ∈ R.

The trajectory of a point particle is described by a curve, i.e., by a map

x : [a, b]→ R3,

where to each time coordinate t we associate the corresponding space coordinates x(t) =

(x1(t), x2(t), x3(t)) of the particle. Usually, we can and will assume that the curve x is smooth,

x ∈ C∞([a, b],R3). The velocity of the particle is then given by

ẋ : [a, b] → R3

and the acceleration by

ẍ : [a, b]→ R3.

b

b

b

x(a)

x(b)

ẋ(t)
x(t)

Figure 2.. Velocity vector

We measure the mass of the particle in real multiples of a fixed unit mass, like kilogram. Hence

mass is mathematically given by a function

m : [a, b]→ R.



1.1. Classical kinematics 3

The momentum is then given by

p = m · ẋ : [a, b] → R3

and the kinetic energy by

E =
m · ‖ẋ‖2

2
: [a, b] → R.

Finally, the length of the trajectory swept out by the particle can by calculated by the formula

∫ b

a

‖ẋ(t)‖ dt.

A choice of space and time coordinates as described above will be called an inertial frame.

According to Newton we can check whether or not our chosen coordinate system is “correct” as

follows:

Newton’s First Law

In any inertial frame, particles that are not subject to any force, are characterized by

ẍ = 0.

Note that this condition is equivalent to x(t) = x(0) + t · ẋ(0). In other words, x is a straight line,

parametrized at constant speed.

The transformations of space and time that were discussed above, namely Euclidean transforma-

tions and time shifts, map inertial frames to other inertial frames. Moreover, we can change an

inertial frame to another one whose origin moves at constant velocity to the first one. This leads

to the following set of transformations mapping inertial frames to inertial frames, the so-called

Galilean transformations.

R × R3 → R × R3,
t

x

 7→


t̃

x̃

 :=


t + t0

Ax + b0 + tb1

 =


1 0

b1 A

 ·


t

x

 +


t0

b0

 ,

where A ∈ O(3), b0, b1 ∈ R3 and t0 ∈ R.

If x is the trajectory of a particle in one inertial frame, its trajectory, velocity and acceleration in

another inertial frame take the form

x̃ = Ax + b0 + tb1,

˙̃x = Aẋ + b1,

¨̃x = Aẍ.

Observe that d2x
dt2
= 0 if and only if d2x̃

dt2
= 0 if and only if d2x̃

dt̃2
= 0. So indeed, Newton’s first law

is compatible with Galilean transformations. In the special case A = I and t0 = 0, we have
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−v := b1 = velocity of observer 2, measured by observer 1

v1 := ẋ = velocity of the particle, measured by observer 1

v2 := ˙̃x = velocity of the particle, measured by observer 2

Hence we have derived the velocity-addition formula

v1 = v + v2 (1.1)

Newton’s second law

In any inertial system, if a particle is subject to the force F, then

d
dt

(m(t)ẋ(t)) = F(t, x(t), ẋ(t)).

Here a force is described by a (smooth) mapping of the form F : R×R3×R3 → R3. In particular,

for m > 0 we have

ẍ(t) =
1

m(t)

(
F(t, x(t), ẋ(t)) − ṁ(t)ẋ(t)

)
.

A solution of such an ordinary differential equation is uniquely determined by its initial values

x(t0) and ẋ(t0).

Therefore, the theory is deterministic, i.e., we can predict the future if we know the initial values.

Example 1.1. A mass m is suspended between two springs with spring constant k > 0. We want

to find the equations of motion, given x(0) and ẋ(0).

b
x

Figure 3.. Mass suspended between springs

By Hooke’s law, the force is F(t, x, y) = −kx. From this it follows that mẍ(t) = −kx(t), hence

ẍ(t) = − k
m

x(t). This ODE has the general solution

x(t) = A · sin

(√
k
m

t

)
+ B · cos

(√
k
m

t

)
,

where B = x(0) and ẋ(0) = A

√
k
m

. Therefore

x(t) = ẋ(0) ·
√

m
k
· sin

(√
k
m

t

)
+ x(0) · cos

(√
k
m

t

)
.
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Energy Equation

Let us assume that the mass m is constant. We differentiate the kinetic energy of a particle and

obtain the energy equation

d

dt
E =

m

2

d

dt
‖ẋ‖2 = m 〈ẍ, ẋ〉 = 〈F, v〉 . (1.2)

1.2. Electrodynamics

Now we turn to Maxwell’s electrodynamics. Assume that

we are in a vacuum without any electric charges present.

In this case, electric and magnetic phenomena are de-

scribed by functions

f : R × R3 → R,

that solve the wave equation, i.e.,

� f := 1
c2

∂2 f

∂t2
− ∆ f = 0,

where ∆ =
∑3

i=1
∂2

∂(xi)2 is the Laplace operator and c the

speed of light in vacuum (about 300, 000 km/s). As all ob-

servers in an inertial frame have equal right, the question

arises which transformations preserve the wave equation.

p
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Figure 4.. James Clerk Maxwell

(1831–1879)

More precisely, which are the transformations

Φ : R × R3 → R × R3, Φ(x) = Lx +


t0

b0

 ,

with L ∈ Mat(4 × 4,R) such that whenever f solves the wave equation, so does f̃ := f ◦Φ?

To find out, we set x0 := c · t and x := (x0, x1, x2, x3). The wave equation then is

� f =
∂2 f

∂(x0)2 −
3∑

i=1

∂2 f

∂(xi)2 = 0.

We now calculate � f̃ . To this end, write

L = (L0,L1,L2,L3) =



L0
0

L0
1

L0
2

L0
3

L1
0

L1
1

L1
2

L1
3

L2
0

L2
1

L2
2

L2
3

L3
0

L3
1

L3
2

L3
3



,

https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/James_Clerk_Maxwell
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where Li ∈ R4 for i = 0, . . . , 3 and x0 := (t0, b0)⊤. We compute

∂ f̃

∂xi
=

∂

∂xi
f (L0x0

+ L1x1
+ L2x2

+ L3x3
+ x0) =

3∑

m=0

∂ f

∂xm
(Lx + x0) · Lm

i ,

hence

∂2 f̃

∂xi∂x j
=

3∑

m,n=0

∂2 f

∂xm∂xn
(Lx + x0)Lm

i Ln
j . (1.3)

Define

I1,3 :=



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



.

The Hessian matrix of a twice continuously differentiable function f is the symmetric matrix

hess f = (
∂2 f

∂xi∂x j )i, j. On the vector space of real symmetric (n × n)-matrices, we can define the

following scalar product:

(A,B)S :=

n∑

i, j=1

Ai
jB

i
j = tr(A⊤ · B).

Then, by definition of the �-operator,

−� f = (hess f , I1,3)S .

By (1.3) we have

−� f̃ = (L⊤ · hess f · L, I1,3)S = tr(L⊤ · hess f⊤ · L · I1,3)

= tr(hess f⊤ · L · I1,3 · L⊤) = (hess f ,L · I1,3 · L⊤)S .

We see that � f = 0 means that hess f is perpendicular to I1,3 while � f̃ = 0 means that hess f is

perpendicular to L·I1,3 ·L⊤. For these two conditions to be equivalent we must have L·I1,3 ·L⊤ =
κ · I1,3 for some κ ∈ R. Without loss of generality we will assume κ = 1 for the scaling factor,

because a transformation of the form κ · I just corresponds to a change of the physical unit of

length.

Definition 1.2. The set of transformations

L := {L ∈ Mat(4 × 4,R) |L · I1,3 · L⊤ = I1,3}

is called the Lorentz group. The corresponding set of affine-linear transformations

P := {Φ : R4 → R4 |Φ(x) = Lx + x0, L ∈ L, x0 ∈ R4}

is called the Poincaré group.
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We have seen that the “admissible” coordinate transformations of Newtonian mechanics are

the Galilean transformations while those for electrodynamics are the Poincaré transformations.

These two groups of transformations are not contained in one another; in this sense classical

kinematics and electrodynamics are incompatible.

Now the question is: which theory is correct if any?
One should be able to answer this question by means of

suitable experiments. For instance, look at the following

situation: Observer 2 is located on a spacecraft that trav-

els towards earth and sends a light signal to observer 1 on

the earth. Observer 1 measures the velocity c1 for the in-

coming light signal, observer 2 however measures another

velocity c2. According to (1.1), classical kinematics pre-

dicts c1 = c2 + v, where v is the velocity of the spacecraft

with respect to the earth. On the other hand, the theory of

electrodynamics states that the speed of light in vacuum is

a fixed value c, independently of the motions of the source

and the observer.

In fact, experiments, such as the famous Michelson-

Morley experiment, have confirmed the predictions of

electrodynamics!
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Figure 5.. Henri Poincaré (1854–

1912)

1.3. The Lorentz group and Minkowski geometry

In order to develop a kinematic theory which is invariant

under Poincaré transformations rather than Galilei trans-

formations, we first need to understand these Poincaré

transformations better. The crucial part are the Lorentz

transformations because adding translations then yields

all Poincaré transformations. The resulting geometry

of lightlike, timelike and spacelike vectors is known

as Minkowski geometry, named after the mathematician

Hermann Minkowski, a close friend of David Hilbert.
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Figure 6.. Hermann Minkowski

(1864 –1909)

Convention. For (x0, x1, x2, x3) ∈ R4 write (x0, x̂) with x̂ := (x1, x2, x3). We write 〈·, ·〉 for the

usual scalar product in Rn, i.e.,

〈x, y〉 =
n∑

i=1

xiyi.

https://en.wikipedia.org/wiki/Henri_Poincare
https://en.wikipedia.org/wiki/Hermann_Minkowski
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We further define another inner product 〈〈·, ·〉〉 on R4 by

〈〈x, y〉〉 :=
〈
x, I1,3 · y

〉
= −x0y0

+ 〈x̂, ŷ〉 .

The symmetric bilinear form 〈〈·, ·〉〉 is indefinite and non-degenerate. Recall that “non-

degenerate” means that 〈〈x, y〉〉 = 0 for all x ∈ R4 implies that y = 0.

By Exercise 1.2, L ∈ L if and only if L⊤I1,3L = I1,3. This is equivalent to
〈
x,L⊤I1,3Ly

〉
=

〈
x, I1,3y

〉

for all x, y ∈ R4. For the left-hand-side we get
〈
x,L⊤I1,3Ly

〉
=

〈
Lx, I1,3Ly

〉
= 〈〈Lx,Ly〉〉 while

the right-hand-side is
〈
x, I1,3y

〉
= 〈〈x, y〉〉. Hence we have obtained another characterization of

the Lorentz group as

L = {L ∈ Mat(4 × 4,R) | 〈〈Lx,Ly〉〉 = 〈〈x, y〉〉 for all x, y ∈ R4}.

This formally resembles the definition of the orthogonal group O(n), which by definition is

O(n) = {A ∈ Mat(n × n,R) | 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ Rn}.

Definition 1.3. We call (R4, 〈〈·, ·〉〉) the (4-dimensional) Minkowski space. The inner product

〈〈·, ·〉〉 is called the Minkowski product.

Any Lorentz transformation L ∈ L has the following properties:

1) det(I1,3) = det(L⊤I1,3L) = det(L)2 · det(I1,3), hence det(L) = ±1.

2) We have

−1 = (I1,3)0
0 = (L⊤I1,3L)0

0 = −(L0
0)2
+

3∑

i=1

(L0
i )2,

thus

(L0
0)2
= 1 +

3∑

i=1

(L0
i )2. (1.4)

In particular, we have (L0
0
)2 ≥ 1, i.e., L0

0
≥ 1 or L0

0
≤ −1.

Definition 1.4. We define the following subsets of L:

L↑+ := {L ∈ L | det L = +1, L0
0 ≥ +1},

L↑− := {L ∈ L | det L = −1, L0
0 ≥ +1},

L↓+ := {L ∈ L | det L = +1, L0
0 ≤ −1},

L↓− := {L ∈ L | det L = −1, L0
0 ≤ −1}.
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The Lorentz group is the disjoint union of these four subsets, L = L↑+ ⊔ L↑− ⊔ L↓+ ⊔ L↓−. In fact,

one can show that they are the connected components of L. The subset L↑+ is a subgroup of L,

see Exercise 1.5. The other three subsets are not because they do not contain the identity matrix.

We make the further assignments for subsets of L:

orientation preserving Lorentz tranformations: L+ := L↑+ ⊔ L↓+,
time orientation preserving Lorentz tranformations: L↑ := L↑+ ⊔ L↑−,
space orientation preserving Lorentz tranformations: L↑

+
⊔ L↓−.

L↑
+

L↑− L↓−

L↓
+

L+
L

L↑

O(n)

SO(n)

det = −1

Figure 7.. Components of the Lorentz group versus orthogonal group

The Lorentz group contains the following special elements:

1) The first type consists of matrices of the form


1 0

0 A

 where A ∈ O(3). For example, we

have space-like rotations:



1 0 0 0

0 cos ϕ − sin ϕ 0

0 sin ϕ cos ϕ 0

0 0 0 1





1 0 0 0

0 cos ϕ 0 − sin ϕ

0 0 1 0

0 sin ϕ 0 cos ϕ



rotation about x3-axis rotation about x2-axis

or space-like reflections 

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1



reflection at x2-x3-plane
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2) Boosts are Lorentz transformations which mix space and time components and leave a

2-dimensional subspace fixed; for example

L1 =



cosh ϕ sinh ϕ 0 0

sinh ϕ cosh ϕ 0 0

0 0 1 0

0 0 0 1



or L2 =



cosh ϕ 0 sinh ϕ 0

0 1 0 0

sinh ϕ 0 cosh ϕ 0

0 0 0 1



. (1.5)

Lemma 1.5 (Hyperbolic identities). For all ϕ, ϕ1, ϕ2 ∈ R we have

(a) cosh(ϕ1 + ϕ2) = cosh(ϕ1) cosh(ϕ2) + sinh(ϕ1) sinh(ϕ2);

(b) sinh(ϕ1 + ϕ2) = cosh(ϕ1) sinh(ϕ2) + sinh(ϕ1) cosh(ϕ2);

(c) cosh(ϕ)2 − sinh(ϕ)2
= 1.

Proof. By definition, cosh ϕ = 1
2
(eϕ + e−ϕ) and sinh ϕ = 1

2
(eϕ − e−ϕ), hence

eϕ = cosh ϕ + sinh ϕ. (1.6)

Inserting (1.6) into

cosh(ϕ1 + ϕ2) = 1
2
(eϕ1+ϕ2 + e−(ϕ1+ϕ2)) = 1

2
(eϕ1 eϕ2 + e−ϕ1e−ϕ2 )

yields ((a)) and similarly for ((b)).

To show ((c)) we observe cosh ϕ − sinh ϕ = cosh(−ϕ) + sinh(−ϕ) = e−ϕ. Multiplication with

(1.6) gives

1 = eϕ · e−ϕ = (cosh ϕ + sinh ϕ) · (cosh ϕ − sinh ϕ) = cosh2 ϕ − sinh2 ϕ. �

Remark 1.6. Geometrically, assertion ((c)) means that for each ϕ ∈ R the point (cosh ϕ, sinh ϕ)⊤

lies on the upper branch of the hyperbola in R2 given by (x0)2
= 1 + (x1)2. In fact, ϕ 7→

(cosh ϕ, sinh ϕ)⊤ maps R bijectively onto this curve.

Lemma 1.7 (Hyperbolic angular identities). For all ϕ1, ϕ2 ∈ R, we have


cosh ϕ1 sinh ϕ1

sinh ϕ1 cosh ϕ1

 ·


cosh ϕ2 sinh ϕ2

sinh ϕ2 cosh ϕ2

 =


cosh(ϕ1 + ϕ2) sinh(ϕ1 + ϕ2)

sinh(ϕ1 + ϕ2) cosh(ϕ1 + ϕ2)

 .

Proof. This follows directly from Lemma 1.5. �
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x0

x1

Figure 8.. Hyperbola

This lemma tells us for instance that the boosts of the form


cosh ϕ sinh ϕ 0 0

sinh ϕ cosh ϕ 0 0

0 0 1 0

0 0 0 1



form a subgroup of the Lorentz group. More precisely,

R→ L, ϕ 7→



cosh ϕ sinh ϕ 0 0

sinh ϕ cosh ϕ 0 0

0 0 1 0

0 0 0 1



,

is a group homomorphism. The first and second column traces a hyperbola when ϕ runs through

R.

x0

x1

e1

e0

Le0

Le1

Figure 9.. Minkowski perpendicular vectors

For L =


cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

 the vector Le0 is perpendicular to Le1 with respect to 〈〈·, ·〉〉.
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Definition 1.8. A vector v ∈ R4 is called

⊲ timelike iff 〈〈v, v〉〉 < 0,

⊲ lightlike iff 〈〈v, v〉〉 = 0 and v , 0,

⊲ spacelike iff 〈〈v, v〉〉 > 0 or v = 0.

The set C := {v ∈ R4 | v lightlike } is called the light cone.

We observe that v = (v0, v̂) is lightlike if and only if −(v0)2
+ ‖v̂‖2 = 0, i.e. if and only if

|v0| = ‖v̂‖. This is the equation of a cone, hence the terminology “light cone”.

b

x0

x1, x2, x3

timelike

Ctimelike

spacelike

Figure 10.. Light cone and causal types

Remark 1.9. The set Z := {v ∈ R4 | v timelike } is open (the ”interior” of the light cone) and

decomposes into two components

Z↑ := {v ∈ Z | v0 > 0} and Z↓ := {v ∈ Z | v0 < 0}.

Remark 1.10. Since 〈〈Lv,Lv〉〉 = 〈〈v, v〉〉 for all vectors and Lorentz tranformations, the type

(time-, light- or spacelike) of a vector v ∈ R4 is left invariant under Lorentz transformations.

Whether or not a Lorentz transformation preservesZ↑ andZ↓ depends on the type of the Lorentz

transformation. More precisely, we have

Lemma 1.11.

L↑ · Z↑ = Z↑,
L↑ · Z↓ = Z↓,
L↓± · Z↑ = Z↓,
L↓± · Z↓ = Z↑.
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Proof. Let L ∈ L and v ∈ Z. We write

L =


L0

0
a⊤

b A

 and v =


v0

v̂



where a, b, v̂ ∈ R3 and A ∈ Mat(3 × 3,R). Then

Lv =


L0

0
v0
+ 〈a, v̂〉

v0b + Av̂

 .

We are interested in the sign of L0
0
v0
+〈a, v̂〉 because it determines whether Lv ∈ Z↑ or Lv ∈ Z↓.

Equation (1.4) can be rephrased as

(L0
0)2
= 1 + ‖a‖2.

Since v is timelike we have |v0| > ‖v̂‖. Therefore

|L0
0v0|2 = (L0

0)2(v0)2 > (1 + ‖a‖2)‖v̂‖2 ≥ ‖a‖2‖v̂‖2 ≥ 〈a, v̂〉2

where we used the Cauchy-Schwarz inequality in the last step. Thus | 〈a, v̂〉 | < |L0
0
v0|. Therefore

L0
0
v0
+ 〈a, v̂〉 has the same sign as L0

0
v0. This shows Lv ∈ Z↑ if L0

0
> 0 and v0 > 0 or L0

0
< 0 and

v0 < 0 and similarly for the other case. We have therefore shown the inclusions L↑ · Z↑ ⊂ Z↑,
L↑ · Z↓ ⊂ Z↓, L↓± · Z↑ ⊂ Z↓, and L↓± · Z↓ ⊂ Z↑.
The opposite inclusions follow from the observation that if L lies in any of the four connected

components of the Lorentz group then its inverse L−1 lies in the same component. �

Next we study “orthogonal” complements with respect to the Minkowski product. For v ∈ R4

we use the notation

vy := {w ∈ R4 | 〈〈v,w〉〉 = 0}

to distinguish it from the usual orthogonal complement v⊥ which is taken with respect to the

Euclidean scalar product. If v , 0 then vy is a 3-dimensional vector subspace of R4.

Lemma 1.12. Let v ∈ R4.

(a) If v is timelike then all elements of vy are spacelike.

(b) If v is spacelike then vy contains timelike, lightlike and nonzero spacelike vectors.

(c) If v is lightlike then vy is the tangent space to C at v and contains lightlike and nonzero

spacelike vectors but no timelike vectors.
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b

v

v⊥

v timelike

b vvy

v spacelike

b

v

vy

v lightlike

Figure 11.. Minkowski orthogonal complements

Proof. (a) Let v =


v0

v̂

 be timelike and let w ∈ vy. Choose a matrix A ∈ O(3) such that

Av̂ = α · e1 = (α, 0, 0)⊤ for some α ∈ R. For L1 =


1 0

0 A

 ∈ L, we have L1v = (v0, α, 0, 0)⊤.

Choose a boost L2 ∈ L with

L2 ·



v0

α

0

0



=



β

0

0

0



for some β > 0. For L = L2L1 ∈ L we have

0 = 〈〈v,w〉〉 = 〈〈Lv,Lw〉〉 =
〈〈

(β, 0, 0, 0)⊤,Lw
〉〉
= −β(Lw)0.

This shows (Lw)0
= 0, hence Lw ∈ {0} × R3 is spacelike. Therefore w = L−1Lw is also

spacelike.

(b) Now let v ∈ R4 be spacelike. If v = 0 then vy = R4 and the statement is trivial. Hence we

assume v , 0. Since vy and the x1-x2-x3-hyperplane are both 3-dimensional subspaces of R4

their intersection has dimension 2 at least. Thus vy contains nonzero spacelike vectors.

Moreover, since v is spacelike it is not perpendicular to itself, i.e. v < vy. Hence R4
= vy⊕R ·v.

We write e0 = w + αv where w ∈ vy and α ∈ R. Then

−1 = 〈〈e0, e0〉〉 = 〈〈w + αv,w + αv〉〉 = 〈〈w,w〉〉 + 2α 〈〈w, v〉〉 + α2 〈〈v, v〉〉 = 〈〈w,w〉〉 + α2 〈〈v, v〉〉 .

Thus

〈〈w,w〉〉 = −1 − α2 〈〈v, v〉〉 ≤ −1

because v is spacelike. Thus w is a timelike vector in vy.

To find a lightlike vector in vy we choose a timelike w0 ∈ vy and a nonzero spacelike w1 ∈ vy.

The continuous function f (t) = 〈〈tw1 + (1 − t)w0, tw1 + (1 − t)w0〉〉 satisfies f (0) < 0 and f (1) >
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0. Thus there exists t0 ∈ (0, 1) with f (t0) = 0. This means that t0w1 + (1 − t0)w0 is lightlike and

since it is a linear combination of w0 and w1 it lies in vy.

(c) Let v ∈ R4 be lightlike. Let w ∈ TvC. Then we can find a smooth curve c : (−ε, ε)→ C with

c(0) = v and ċ(0) = w. Since 〈〈c(t), c(t)〉〉 = 0 for all t ∈ (−ε, ε) we find by differentiation

0 = d
dt
〈〈c(t), c(t)〉〉 |t=0 = 〈〈ċ(0), c(0)〉〉 + 〈〈c(0), ċ(0)〉〉 = 2 〈〈v,w〉〉 .

Thus w ∈ vy. This shows TvC ⊂ vy. Since both space are 3-dimensional we find TvC = vy.

Intersecting with the x1-x2-x3-hyperplane we see as in (b) that vy contains nonzero spacelike

vectors. Since v ∈ vy it also contains lightlike vectors. If vy contained a timelike vector w then

we would have v ∈ wy in contradiction to (a). �

Lemma 1.13. Let v ∈ R4 be timelike. Then

vy = {w ∈ R4 | ∃ α ∈ R \ {0}, such that αv + w and αv − w lightlike} ∪ {0 ∈ R4}.

αv

−αv

w

x0

x1

C

Figure 12.. Minkowski orthogonal complement of timelike vector

Proof. We show both inclusions. We start with “⊃”: Let w ∈ R4 be such that there exists

α ∈ R \ {0} so that αv + w and αv − w are lightlike. Then

0 = 〈〈αv ± w, αv ± w〉〉 = α2 〈〈v, v〉〉 ± 2α 〈〈v,w〉〉 + 〈〈w,w〉〉

and hence

4α 〈〈v,w〉〉 = 0.

Since α , 0 this shows 〈〈v,w〉〉 = 0, i.e., w ∈ vy.

Now we show “⊂”: Let w ∈ vy \ {0}. Then we have for all α ∈ R:

〈〈αv ± w, αv ± w〉〉 = α2 〈〈v, v〉〉 ± 2α 〈〈v,w〉〉︸ ︷︷ ︸
=0

+ 〈〈w,w〉〉 = α2 〈〈v, v〉〉 + 〈〈w,w〉〉 .

Since 〈〈v, v〉〉 < 0 and 〈〈w,w〉〉 ≥ 0 we can choose

α =

√
−〈〈w,w〉〉〈〈v, v〉〉

which does the job. �
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Lemma 1.14. Let x, y ∈ Z↑ with 〈〈x, x〉〉 = 〈〈y, y〉〉 = −1. Then

〈〈x, y〉〉 ≤ −1

and equality holds if and only if x = y.

Proof. We choose A ∈ O(3) such that Ax̂ = (α, 0, 0)⊤. Then we have for L1 :=


1 0

0 A

 ∈ L that

L1x =



β

α

0

0



.

From

−1 = 〈〈x, x〉〉 = 〈〈L1x,L1x〉〉 = −β2
+ α2

we see that the point (β, α)⊤ lies on the hyperbola as in Remark 1.6. Because of x ∈ Z↑ it lies

on the upper branch. Therefore there exists ϕ ∈ R such that (β, α)⊤ = (cosh ϕ, sinh ϕ)⊤. Putting

L2 :=



cosh(−ϕ) sinh(−ϕ) 0 0

sinh(−ϕ) cosh(−ϕ) 0 0

0 0 1 0

0 0 0 1



∈ L and L := L2L1 ∈ L we obtain

Lx = L2L1x = e0.

Next we observe

−1 = 〈〈y, y〉〉 = 〈〈Ly,Ly〉〉 = −((Ly)0)2
+ ‖L̂y‖2 ≥ −((Ly)0)2

with equality if and only if L̂y = 0. Hence |(Ly)0| ≥ 1 with equality if and only if L̂y = 0.

Both L1 and L2 preserve time orientation, hence Ly ∈ Z↑. In other words, (Ly)0 > 0. Therefore

we know (Ly)0 ≥ 1 with equality if and only if L̂y = 0.

Now we see

〈〈x, y〉〉 = 〈〈Lx,Ly〉〉 = 〈〈e0,Ly〉〉 = −(Ly)0 ≤ −1

with equality if and only if L̂y = 0. Since Ly ∈ Z↑ with 〈〈Ly,Ly〉〉 = −1 the condition L̂y = 0 is

equivalent to Ly = e0 = Lx and hence to y = x. �

Recall that cosh maps [0,∞) bijectively onto [1,∞). From Lemma 1.14 we know that − 〈〈x, y〉〉 ∈
[1,∞). Therefore we can make the following definition:
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Definition 1.15. We set

H3 := {x ∈ Z↑ | 〈〈x, x〉〉 = −1}.

The unique function dH : H3 × H3 → [0,∞) satisfying

cosh(dH(x, y)) = − 〈〈x, y〉〉

is called hyperbolic distance. The pair (H3, dH) is called the (3-dimensional) hyperbolic space.

H3

Figure 13.. Hyperbolic space

Remark 1.16. Hyperbolic space (H3, dH) is a metric space, i.e., for all x, y, z ∈ H3, we have

(a) dH(x, y) ≥ 0 and dH(x, y) = 0 if and only if x = y,

(b) dH(x, y) = dH(y, x),

(c) dH(x, z) ≤ dH(x, y) + dH(y, z).

Assertion ((b)) is clear and ((a)) is a consequence of Lemma 1.14. A proof of the triangle

inequality can be found in [1, Satz 4.2.6].

Lorentz transformations which preserve the time orientation act on H3 and preserve the hyper-

bolic distance. In other words, L↑(H3) = H3 and dH(Lx,Ly) = dH(x, y) for all x, y ∈ H3 and

L ∈ L↑. Thus L↑ acts by isometries on H3.

Remark 1.17. For any x ∈ H3, the orthogonal complement xy coincides with the tangent space

TxH3 to H3 at the point x. To see this, take a smooth curve c : (−ε, ε) → H3 with c(0) = x.

Differentiating the equation

〈〈c(t), c(t)〉〉 ≡ −1

at t = 0 yields

0 = 〈〈ċ(0), c(0)〉〉 + 〈〈c(0), ċ(0)〉〉 = 2 〈〈ċ(0), x〉〉
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and hence ċ(0) ∈ xy. Thus TxH3 ⊂ xy and since both spaces have dimension three, TxH3
= xy.

By Lemma 1.12, TxH3 contains only spacelike vectors. Hence the restriction of 〈〈·, ·〉〉 to TxH3 is

positive definite. Restricted to any tangent space of H3, the Minkowski inner product becomes

a Euclidean scalar product. This provides H3 with the structure of a Riemannian manifold.

Remark 1.18. Two points x and y ∈ H3, x , y, determine a great hyperbola G = Gx,y as

follows: Take the plane E that is spanned by 0, x and y. The intersection of E with H3 defines

the great hyperbola G = E ∩ H3.

0

E

Figure 14.. Great hyperbola

We can parametrize the great hyperbola as follows: Choose u ∈ E ∩ TxH3 with 〈〈u, u〉〉 = 1. The

plane E contains the timelike vector x but TxH3
= xy contains only spacelike vectors. Hence

E is not contained in TxH3 and E ∩ TxH3 must be one-dimensional. This means that there are

only two possibilities to choose u; we can only replace u by −u. Both choices are equally valid.

The curve parametrized by

c(t) = cosh(t) · x + sinh(t) · u,
is contained in E, as c(t) is always a linear combination of x and u ∈ E. The curve c(t) is also

contained in H3, because

〈〈c(t), c(t)〉〉 = 〈〈cosh(t) · x + sinh(t) · u, cosh(t) · x + sinh(t) · u〉〉
= cosh(t)2 〈〈x, x〉〉︸︷︷︸

=−1

+2 cosh(t) sinh(t) 〈〈x, u〉〉︸ ︷︷ ︸
=0

+ sinh(t)2 〈〈u, u〉〉︸ ︷︷ ︸
=1

= − cosh(t)2
+ sinh(t)2

= −1.

In fact, c passes exactly once through the great hyperbola G as t traverses the real numbers.

Furthermore, c(0) = x and c(±dH(x, y)) = y, where the sign depends on the choice of u (whether

u points in direction of y or not).

Let c and c̃ be two great hyperbolic arcs starting at x, parametrized by c(t) = cosh(t)·x+sinh(t)·u
and c̃(t) = cosh(t) ·x+ sinh(t) ·v with u, v ∈ TxH3 and 〈〈u, u〉〉 = 〈〈v, v〉〉 = 1. The angle α ∈ [0, π)
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bc

x

u

G = H3 ∩ E

0

Figure 15.. Tangent vector to great hyperbola

between the two great hyperbolas is characterized by

cos(α) = 〈〈u, v〉〉 .

We have the following trigonometric identities of hyperbolic geometry:

Let x, y, z ∈ H3 three different points and let α be the angle between the great hyperbolas running

from x to y and to z, respectively. Similarly, let β be the angle at y and γ the angle at z. Let

furthermore a = dH(y, z), b = dH(x, z) and c = dH(x, y).

x
α

y

β

z

γ

a

b

c

Figure 16.. Hyperbolic triangle

Theorem 1.19. In a hyperbolic triangle the following identities hold:

Law of sines:
sinh(a)

sin(α)
=

sinh(b)

sin(β)
=

sinh(c)

sin(γ)
,

Law of cosines for angles:

cos(α) = cosh(a) sin(β) sin(γ) − cos(β) cos(γ),

Law of cosines for sides:

cosh(a) = cosh(b) cosh(c) − sinh(b) sinh(c) cos(α).

The law of cosines for sides will be helpful in the investigation of the relativistic addition of

velocities. It allows to determine the length of a side of a hyperbolic triangle, given the other
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lengths and the opposite angle. For proofs of these laws see e.g. [2, Theorem 4.5.9].
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1.4. Relativistic kinematics
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Figure 17.. Albert Einstein

(1879–1955)

We now start to develop relativistic kinematics as intro-

duced by Albert Einstein in 1905. We merge space and

time to the 4-dimensional spacetime. The elements of

spacetime are called events. To model particles, we use

their world lines in spacetime

{(t, x̂(t)) ∈ R × R3 | t ∈ R}.

instead of their parametrizations x̂ : R → R3 in space.

Observe that the world line is a subset of R4, more pre-

cisely a 1-dimensional submanifold, while t 7→ x̂(t) is a

parametrized curve. Both contain the same information,

they determine each other.

We use the canonical parametrization of the world

line t 7→ (t, x(t)) to compute its tangent:

d
dt

(t, x̂(t)) = (1, ˙̂x(t)).

Therefore the tangents to a world line are never par-

allel to {0} × R3.

bc bc

R

R
3

x(0)

Figure 18.. Worldline

Conversely, by the implicit function theorem, any

smooth curve in R × R3 with tangents never paral-

lel to {0} × R3 can be parametrized in the form

t 7→ (t, x̂(t)).

Hence it is a world line.

bc bc bc

b
R

R
3

Figure 19.. Not a worldline

1.4.1. The postulate of special relativity

Inertial frames. There exist distinguished coordinate systems for spacetime (i.e., identifications

of physical spacetime with R ×R3) called inertial frames. In an inertial frame the world lines of

particles not subject to any forces are straight lines.

Composing an inertial frame with a time orientation preserving Poincaré transformation yields

another inertial frame and any two inertial frames are related by a time orientation preserving

Poincaré transformation.

https://en.wikipedia.org/wiki/Albert_Einstein
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We compute the velocity of a particle X in an inertial frame from the view of an ob-

server not in motion with respect to this frame, i.e., one that has the world line R · e0.

To this end, parametrize the world line of X in the

form

t 7→ (ct, x̂(t)), x0 := ct.

Here c is the vacuum speed of light. The physical

velocity of the particle X is then given by

vphys :=
dx̂

dt
= c

dx̂

dx0
.

bc bc

R

R
3

Figure 20.. Special parametrization of

worldline

The mathematical velocity is

v :=
dx̂

dx0
=

1
c
vphys.

For a reparametrization σ 7→ (ϕ(σ), x̂(ϕ(σ))) = x(ϕ(σ)) of the world line we have

d

dσ
(x ◦ ϕ) = q

(
ϕ′(σ),

dx̂

dx0
(ϕ(σ)) · ϕ′(σ)

)
= ϕ′(σ)

(
1,

dx̂

dx0
(ϕ(σ))

)
.

This implies the invariance of the mathematical velocity under reparametrizations:

v =
dx̂

dx0
=

d(x̂ ◦ ϕ)

dσ

/
d(x0 ◦ ϕ)

dσ
.

The mathematical velocity of the particle X is determined by the slope of the tangent: For a

tangent vector ẋ(s) = (ẋ0(s), ˙̂x(s)), we have

〈〈ẋ(s), ẋ(s)〉〉 =
〈〈

(ẋ0(s), ˙̂x), (ẋ0(s), ˙̂x)
〉〉

= −ẋ0(s)2
+

∥∥∥ ˙̂x(s)
∥∥∥2

= ẋ0(s)2(−1 + ||v(s)||2).

We observe:

ẋ(s) is timelike ⇔ −1 + ||v(s)||2 < 0 ⇔ ||v(s)|| < 1 ⇔
∣∣∣
∣∣∣vphys(s)

∣∣∣
∣∣∣ < c,

ẋ(s) is lightlike ⇔ −1 + ||v(s)||2 = 0 ⇔ ||v(s)|| = 1 ⇔
∣∣∣
∣∣∣vphys(s)

∣∣∣
∣∣∣ = c,

ẋ(s) is spacelike ⇔ −1 + ||v(s)||2 > 0 ⇔ ||v(s)|| > 1 ⇔
∣∣∣
∣∣∣vphys(s)

∣∣∣
∣∣∣ > c.

We measured velocity of X with respect to an observer B1 with world line R·e0 in a given inertial

frame. Which velocity of X will be measured by a second observer B2 moving with constant

velocity (less than c) with respect to B1?

The world line of B2 is a straight line in the inertial frame of B1. This straight line is timelike

because the velocity of B2 with respect to B1 is less than c. Thus we can find a time orientation
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preserving Poincaré transformation P which maps the world line of B2 to Re0. By the postulate

of special relativity, this yields another inertial frame. We write P(x) = Lx + p with L ∈ L↑
and p ∈ R4. In the new coordinates, B2 has the world line Re0 and the world line of X is

parametrized by

t 7→ y(t) := P(ct, x̂(t)) = P(x(t)) = Lx(t) + p.

Thus B2 observes the tangent vector ẏ(t) = Lẋ(t) to the world line of X and measures the

mathematical velocity
˙̂y(t)

ẏ0(t)
. Here we have ẏ = ẏ0 ·e0+

˙̂y, the splitting of ẏ into the part tangential

to e0 and the normal part corresponding to the factorization R4
= Re0 ⊕ ey

0
= Re0 ⊕ Te0

H3.

Reversing the transformation yields

ẋ = L−1ẏ

= L−1(ẏ0 · e0 +
˙̂y)

= ẏ0 · L−1e0 + L−1 ˙̂y

= − 〈〈ẏ, e0〉〉 · L−1e0 + L−1 ˙̂y

= −
〈〈

ẋ,L−1e0

〉〉
· L−1e0 + L−1 ˙̂y

= − 〈〈ẋ, z〉〉 · z + L−1 ˙̂y

where we put z := L−1e0 ∈ H3 for the tangent vector to the world line of B2 (with respect to the

original inertial frame before transformation). Thus the mathematical velocity vector observed

by B2 but expressed in the inertial frame of B1 is given by

L−1 ˙̂y

− 〈〈ẋ, z〉〉 =
ẋ + 〈〈ẋ, z〉〉 · z
− 〈〈ẋ, z〉〉 ∈ zy = TzH3. (1.7)

1.4.2. Simultaneity

How does our inertial observer B1 determine if two events happen simultaneously?

Observer B1 sends out a light signal at the event −αv, which is reflected at the event E2 and is

again received by B1 at the event αv. Because the light took the same time for the way to E2

and the way back, the event E2 must happen at the same time as the event E1= 0. For observer

B2 having constant velocity with respect to B1, the event E1 happens at the same time as E2’.

But for B1, the events E1 and E2’ do not happen simultaneously.
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Lemma 1.13 can now be interpreted as follows: The

set of events that are simultaneous to 0 ∈ R × R3 for

an observer with world line Rv, is precisely vy.

There is a different way to establish this statement:

For observer B1, two events are simultaneous if and

only if they have the same x0 component, as the x0

component was introduced to by the time compo-

nent from the view of B1.

The hyperplanes {x0} × R3 in R4 with fixed x0 are

exactly those perpendicular to the world line of B1

(with respect to the Mikowski product). Using a

Lorentz transformation that converts B1 to B2, this

converts events which are simultaneous for B1 into

events which are simultaneous for B2, by the pos-

tulate of special relativity. On the other hand, we

know that our Lorentz transformation respects the

Minkowski product, in particular, it maps e0
y to vy.

b b

b

x0

x1

αv

−αv

B1

B2

E1

E2

E2’

Figure 21.. Event E2 is simultaneous to E1

w.r.t. observer B1 and E2’ w.r.t. B2

This shows that simultaneity of events is seen differently by different inertial observers. But who

is right? Since no inertial observer is distinguished amongst all of them, every inertial observer

is equally right. We have to abandon the idea that simultaneity of two events is a property of

events only; simultaneity is not an absolute concept. Simultaneity is a relative concept in the

sense that it depends on the observer.

Remark 1.20. “Being in the same place” is already a relative concept in classical mechanics. If

observer B2 is moving with constant velocity with respect to the inertial observer B1, then, from

the point of view of B1, B2 occupies different locations at different times, while B2 considers

himself as staying in the same place for all times.
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1.4.3. Superluminal velocity

Consider the world line Rw of a hypothetical parti-

cle X moving with constant speed higher than that

of light with respect to an inertial observer B1. In

other words, the tangent vector w to the world line

of X is spacelike. The vector w is also nonzero be-

cause otherwise it would not span a worldline. By

Lemma 1.12 ((b)) we can find a timelike vector v in

wy. Let now B2 be the inertial observer with the

world line Rv.

Then the whole world line of Rw is perpendicular

to the world line of B2, i.e., from the point of view

of B2 all events on Rw are simultaneous. Thus B2

observes the particle X to be at all places at the same

time. Nothing like this has ever been observed. In

B2’s inertial system the “worldline” of X is not a

worldline any more.

b

x0

x1

e0

B1

B2

v

C

w

X

Rw

Figure 22.. Problems with superluminal

velocity

Even worse: We can choose u ∈ Z↑ (close enough to the lightcone) such that w lies below

uy. Denote the observer with worldline Ru by B3. If we now switch to B3’s inertial system

by applying a Lorentz transformation L ∈ L↑ with Lu = e0, then Lw will have negative x0-

component. From the point of view of B3, the world line of X moves into the past!

b

B1

w

Xu uy B3

Lw

Figure 23.. Causality problems due to superluminal velocity

This leads to causality problems. If one were able to travel to or send signals to the past one

could influence the past and thus change the present. These considerations lead to the conclusion

that nothing can move faster than light. Hypothetical particles moving at superluminous velocity

are sometimes called tachyons.

1.4.4. Absolute velocity and hyperbolic distance

Let X be a particle with world line Rx + p and B an inertial observer with world line Ry + q.

Here p, q ∈ R4 are arbitrary vectors and, without loss of generality, we can normalize x and

y such that x, y ∈ H3. By (1.7) B observes the particle X to have the mathematical velocity
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v =
x+〈〈x,y〉〉·y
−〈〈x,y〉〉 . For the square of the absolute velocity, we calculate

〈〈v, v〉〉 =

=−1︷︸︸︷
〈〈x, x〉〉+2 〈〈x, y〉〉2 + 〈〈x, y〉〉2

=−1︷︸︸︷
〈〈y, y〉〉

〈〈x, y〉〉2

=
−1 + 〈〈x, y〉〉2

〈〈x, y〉〉2

=
−1 + cosh(dH(x, y))2

cosh(dH(x, y))2

=
sinh(dH(x, y))2

cosh(dH(x, y))2

= tanh(dH(x, y))2.

Therefore we get

||v|| = tanh(dH(x, y))

for the absolute mathematical velocity.

1.4.5. Addition of velocity

As preparation we need a little lemma on hyperbolic functions.

Lemma 1.21. For any x ∈ (−1, 1) we have

(a) cosh(artanh(x)) =
1

√
1 − x2

;

(b) sinh(artanh(x)) =
x

√
1 − x2

;

(c) eartanh(x)
=

1 + x
√

1 − x2
=

√
1 + x
√

1 − x
.

Proof. (a) Set y := artanh(x). Then

x2
= tanh(y)2

=
sinh(y)2

cosh(y)2
=

cosh(y)2 − 1

cosh(y)2
= 1 − 1

cosh(y)2
,

which implies cosh(y)2
=

1
1−x2 . Because cosh is positive, we are allowed to take the positive

square root, which gives the statement.

(b) From (a), we get

sinh(artanh(x))2
= cosh(artanh(x))2 − 1 =

1

1 − x2
− 1 =

x2

1 − x2
.

Here we have to be careful with the sign, namely we have

x > 0⇔ artanh(x) > 0⇔ sinh(artanh(x)) > 0.



1.4. Relativistic kinematics 27

Taking the square root with the correct sign yields the claim.

(c) follows from ey
= cosh(y) + sinh(y). �

Let us now consider the following situation: We have an inertial observer with world line Rx+p,

and inertial observer B2 with world line Ry + q and an object X with world line Rz + r. Let v =

tanh(dH(y, z)) the absolute velocity of X in the view of B2 and V = tanh(dH(x, y)) the absolute

velocity of B2 in the view of B1. We want to determine the absolute velocity w = tanh(dH(x, z))

of X in the view of B1. This is a problem of hyperbolic trigonometry.

x

y

α

z

artanh(v)
artanh(w)

artanh(V)

Figure 24.. Addition of velocities and hyperbolic trigonometry

Write α for the angle at the vertex y in this hyperbolic triangle. This is the angle between the two

velocity vectors of B1 and of X in the view of B2. The law of cosines for sides of the hyperbolic

geometry (Theorem 1.19) now states

cosh(artanh(w)) = cosh(artanh(v)) cosh(artanh(V)) − sinh(artanh(v)) sinh(artanh(V)) cos(α)

and Lemma 1.21 gives

1
√

1 − w2
=

1
√

1 − v2

1
√

1 − V2
− v
√

1 − v2

V
√

1 − V2
cos(α)

=
1 − vV cos(α)√
(1 − v2)(1 − V2)

.

Hence

1 − w2
=

(1 − v2)(1 − V2)

(1 − vV cos(α))2

and therefore

w2
= 1 − (1 − v2)(1 − V2)

(1 − vV cos(α))2

=
(1 − vV cos(α))2 − (1 − v2)(1 − V2)

(1 − vV cos(α))2

=
1 − 2vV cos(α) + v2V2 cos(α)2 − (1 − v2 − V2

+ v2V2)

(1 − vV cos(α))2

=
v2
+ V2 − 2vV cos(α) − v2V2 sin(α)2

(1 − vV cos(α))2
.

This gives the general formula for relativistic addition of velocities:
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w =

√
v2 + V2 − 2vV cos(α) − v2V2 sin(α)2

1 − vV cos(α)

Let us look at two special cases. For α = π, we have cos(α) = −1 and sin(α) = 0. Hence we get

w =

√
v2 + V2 + 2vV

1 + vV
=

v + V

1 + vV
.

The is a deviation from the classical result w = v + V by the factor 1
1+vV

. For velocities that are

small compared to the speed of light, vV is very small and the difference is barely measurable.

Now look at the case that the velocities are perpendicular to each other. For α = π/2, we have

cos(α) = 0 and sin(α) = 1. Therefore we get

w =
√

v2 + V2 − v2V2.

In classical mechanics, the Pythagorean theorem would have given the result w =
√

v2 + V2.

For general α the law of cosines for the Euclidean geometry yields

w =
√

v2 + V2 − 2vV cos(α)

for classical mechanics.

α

vw

V

Figure 25.. Newtonian addition of velocities and Euclidean trigonometry

It is also interesting to consider that case v = 1, i.e., X moves with the speed of light relative to

B2. Relativistic velocity addition gives us

w =

√
1 + V2 − 2V cos(α) − V2 sin(α)2

1 − V cos(α)
=

√
1 + V2 cos(α)2 − 2V cos(α)

1 − V cos(α)
= 1.

Thus X also moves with the same speed of light relative of B1, independently of the relative

motion of B1 and B2.

1.4.6. Length contraction

Consider a bar not subject to any acceleration. We choose the coordinate system such that one

end of the bar has the world line Re0 and the other end has the world line Re0 + Le1. An inertial
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observer B1 sitting at the first end of the bar, i.e. having world the world line Re0, measures

L for the length of the bar. Indeed, from B1’s point of view, the events 0 and (0, L, 0, 0)⊤ are

simultaneous their distance in space is
√
〈〈0 − (0, L, 0, 0)⊤, 0 − (0, L, 0, 0)⊤〉〉 =

√
〈〈(0, L, 0, 0)⊤, (0, L, 0, 0)⊤〉〉 = L.

Let now B2 be a second inertial observer with world line Rx. Which length L̃ will by measured

by B2?

x̂

e0x
L

α

Figure 26.. Length contraction

To calculate this, we have to determine the event on the world line Re0+Le1 that is simultaneous

to 0. From B2’s point of view, the events simultaneous to 0 are exactly the points on xy. We

solve

0 =
〈〈

(t, L, 0, 0)⊤, x
〉〉
= −tx0

+ Lx1

for t and we obtain

t = L
x1

x0
= L
〈x̂, e1〉

x0
= L

cos(α) · ||x̂||
x0

= L · cos(α) · V,

where V is the absolute velocity between B1 and B2 and α is the angle between e1 and the

velocity vector. Hence for B2, the events 0 and (L · cos(α) · V, L, 0, 0)⊤ are simultaneous. B2

measures the distance in space

L̃2
=

〈〈
0 − (L · cos(α) · V, L, 0, 0)⊤, 0 − (L · cos(α) · V, L, 0, 0)⊤

〉〉

=

〈〈
(L · cos(α) · V, L, 0, 0)⊤, (L · cos(α) · V, L, 0, 0)⊤

〉〉

= −L2 · cos(α)2 · V2
+ L2

= L2 · (1 − cos(α)2V2)

and therefore

L̃ = L ·
√

1 − cos(α)2V2

An inertial observer moving relative to the bar observes a length which is shortened by the

factor
√

1 − cos(α)2V2 ≤ 1 compared to an observer who is at rest relative to the bar. This

phenomenon is known as length contraction.
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If the motion of the two observers is in the direction of the bar (α = 0 or α = π), then we have

the strongest length contraction, namely by the factor
√

1 − V2. If the motion is perpendicular

to the bar (α = ±π/2), then there is no contraction.

The length of an object measured by an observer in rest relatively to the object is called the

proper length or rest length of the object. It is the maximal length of the object that an observer

can measure.

Hence the length of an object has also become a relative concept in the sense that it depends on

the observer. This leads to a number of puzzling questions. Here is an example:

The Tunnel Paradox. A train with proper length L is travelling through a tunnel that also has

proper length L. Is the train contained completely in the tunnel at some point?

From an outside view:

Because of length contraction, the train is shorter than the tunnel. Therefore, for some time, the

train is completely contained in the tunnel.

From the locomotive driver’s point of view:

Because of length contraction, the tunnel is shorter than the train. Therefore the train is never

completely contained in the tunnel.

Who is right?

“Being completely contained in the tunnel” means that both ends of the train are in the tunnel

simultaneously. Simultaneity, however, is a relative concept (depending on the inertial observer)

and hence this is also the case for the concept of “being completely contained in the tunnel”.

Both observers are right from there respective points of view.

1.4.7. Time dilation

An inertial observer B1 with world line R · e0 observes the elapsed time T between the events

0 and T · e0. More generally, if B1 has the world line R · x with x ∈ H3, then B1 observes the

elapsed time T between the events 0 and T · x. Let now B2 be another inertial observer with

world line R · y where y ∈ H3. Which is the time T̃ elapsed between the events 0 und T · x from

the viewpoint of B2?

To answer this question, we have to determine the T̃ for which the event T̃ · y is simultaneous to

the event T · x from the point of view of B2. This is the case if and only if the difference vector

T · x − T̃ · y is Minkowski-perpendicular to the world line of B2, i.e. to y. We solve:

0 =
〈〈

y, T · x − T̃ · y
〉〉
= T · 〈〈y, x〉〉 − T̃ · 〈〈y, y〉〉 = −T · cosh(dH(y, x)) + T̃ ,

hence, by Lemma 1.21,

T̃ = T · cosh(dH(y, x)) = T · cosh(artanh(V)) = T · 1
√

1 − V2
,

where V is the velocity between B1 and B2. Because of the correction factor 1√
1−V2

≥ 1, the

time elapsed is longer in the view of B2. This phenomenon is known as time dilation. From the

point of view of B2, the clock of B1 runs slower than his own. Exchanging roles of B1 and B2,

we analogously obtain that the clock of B2 runs slower than his own for B1.
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In physical units, we have

T̃ =
T√

1 −
V2

phys

c2

For velocities much below the speed of light, Vphys ≪ c, i.e. V ≪ 1, the correction factor is very

close to 1. For this reason, time dilation is not noticed in daily life.

Example 1.22. Cosmic radiation generates certain elementary particles, so-called muons, on

impact with the outer atmosphere. These muons have a mean lifetime of 2 · 10−6 s. Even at the

speed of light, the muons can cover a distance of only

3 · 105 km

s
· 2 · 10−6s = 600m

on average. One would expect that only very few muons ever reach the surface of the earth

because the distance between the outer atmosphere and the surface of the earth is roughly 10

km. It is a fact however, that muons can be detected on the earth’s surface in great numbers.

10 km

Earth C
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R
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ti

o
n

bc
bc
bc
bc
bc
bc
bc

bc
bc

formation of µ-mesons

Figure 27.. µ-mesons created by cosmic radiation

What is the explanation for this?

Explanation from our point of view on earth: Time dilation implies that time goes by much

slower for the muons moving with very high speed towards the earth. For this reason, from our

point of view, the lifetime of muons is much longer than 2 · 10−6 s.

Explanation from the muon’s point of view: Because of length contraction the distance between

the outer atmosphere and the surface of the earth is much less than 10 km. Therefore the distance

to the surface can be overcome even in the short time at disposal.

This example shows nicely that length contraction and time dilation are really two sides of the

same medal.

We now consider an observer B that is subject to acceleration. We

assume that B always has velocity below light speed with respect

to inertial observers, i.e. its world line is timelike. Parametrize

the world line of B by x : [a, b] → R4. After possibly using

the parameter transform s 7→ −s, we can assume that x is future

directed, i.e. that dx
ds

(s) ∈ Z↑ for all s ∈ [a, b].

b

b

E1

E2

B

Figure 28.. Worldline of ac-

celerated particle
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What is the time elapsed between two events E1= x(a) and E2= x(b), measured on a clock taken

along by observer B? In the special case that B moves with constant velocity (with respect to

inertial observers), we already know that the time elapsed between E1 and E2 is given by
√
− 〈〈E2 − E1, E2 − E1〉〉.

We reduce the general case to this one. For a sufficiently fine partition a = s0 < s1 < . . . < sn = b

we have x(si) − x(si−i) ∈ Z↑, i = 1, . . . , n, because

x(si) − x(si−i)

si − si−i

→ dx

ds︸︷︷︸
∈Z↑

,

as the mesh of the partition tends to 0. Since Z↑ is open, x(si)−x(si−i)
si−si−i

has to be in Z↑ if si − si−1

is small enough1.

This partition leads to the approximation of an accelerated ob-

server B by a “piecewiese inertial observer”. This approximation

becomes better as the mesh of the partition gets smaller. The

time elapsed between to subsequent events x(si−1) and x(si) in

the view of the corresponding inertial observer with world line

R · (x(si) − x(si−1)) + x(si−1) is

b

b

+

+

+

Figure 29.. Approximation

by polygon√
− 〈〈x(si) − x(si−1), x(si) − x(si−1)〉〉.

Summation gives an approximate value for the time elapsed between E1= x(a) and E2= x(b)

from the viewpoint of B:

n∑

i=1

√
− 〈〈x(si) − x(si−1), x(si) − x(si−1)〉〉

=

n∑

i=1

√
−
〈〈
x(si) − x(si−1)

si − si−1
,

x(si) − x(si−1)

si − si−1

〉〉
· (si − si−1)

→
∫ b

a

√
−
〈〈
dx

ds
(s),

dx

ds
(s)

〉〉
ds ,

as the mesh tends to 0 by the theorem on Riemann sums. We summarize: From the view of an

accelerated observer B with word line x, the time elapsed between the events x(a) and x(b) is

given by

∫ b

a

√
−
〈〈
dx

ds
(s),

dx

ds
(s)

〉〉
ds

1In fact, it is not hard to see that for every future-directed timelike curve x, we always have x(t2) − x(t1) ∈ Z↑ even

if t2 is much larger than t1. However, we will not need this.
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Definition 1.23. A future-directed parametrization x : [a, b] → R4 of a timelike world line is

called a parametrization by proper time if

〈〈
dx

dτ
,

dx

dτ

〉〉
≡ −1.

In other words, we have for all τ:
dx

dτ
(τ) ∈ H3.

Remark 1.24. If the world line of an observer is parametrized by proper time, the parameter τ

always gives the time elapsed from the view of this observer:

∫ τ0

a

√
−
〈〈
dx

dτ
,

dx

dτ

〉〉
dτ = τ0 − a.

Lemma 1.25. Every timelike world line can be parametrized by proper time. The

parametrization by proper time is unique up to parameter transformations of the form

τ 7→ τ + τ0 for fixed τ0 ∈ R.

Proof. Existence: Let s 7→ x(s) a parametrization of the world line. Without loss of generality

let
dx0

ds
> 0, otherwise replace s by −s. For fixed t0 ∈ R set

ψ(s) :=

∫ s

t0

√
−
〈〈
dx

ds
(t),

dx

ds
(t)

〉〉
dt.

Then

ψ′(s) =

√
−
〈〈
dx

ds
(s),

dx

ds
(s)

〉〉
> 0.

Hence ψ is strictly monotonically increasing. For the inverse ϕ := ψ−1 we have

dϕ

dτ
(τ) =

1

ψ′(ϕ(τ))
=

1√
−
〈〈
dx

ds
(ϕ(τ)),

dx

ds
(ϕ(τ))

〉〉 .

This implies

〈〈
d(x ◦ ϕ)

dτ
(τ),

d(x ◦ ϕ)

dτ
(τ)

〉〉
=

〈〈
dx

ds
(ϕ(τ)) · dϕ

dτ
(τ),

dx

ds
(ϕ(τ)) · dϕ

dτ
(τ)

〉〉

=

(
dϕ

dτ
(τ)

)2

·
〈〈
dx

ds
(ϕ(τ)),

dx

ds
(ϕ(τ))

〉〉

= −1.



34 1. Special relativity

Uniqueness: Let x and x ◦ ϕ be parametrizations by proper time. Then

−1 =

〈〈
d(x ◦ ϕ)

dτ
,

d(x ◦ ϕ)

dτ

〉〉
=

(
dϕ

dτ

)2

·
〈〈
dx

ds
,

dx

ds

〉〉
= −

(
dϕ

dτ

)2

.

This implies
∣∣∣∣dϕ

dτ

∣∣∣∣ = 1 and hence ϕ(τ) = ±τ + τ0 for some fixed τ0 ∈ R. Since both parametriza-

tions are future directed, we have

0 <
d(x ◦ ϕ)0

dτ
=

dϕ

dτ
· dx0

ds︸︷︷︸
>0

and hence
dϕ

dτ
> 0.

Thus ϕ(τ) = τ + τ0. �

The Twin Paradox

Suppose Alice and Bob are twins. Bob decides to go on a round trip in a space craft while Alice

remains at rest at home in an inertial frame. On his return, Bob is younger than Alice!

This can be seen as follows: In the inertial frame of Alice, let E1= 0 the event of Bob’s departure

and E2= (T, 0, 0, 0)⊤ the event of his return. This means that Alice has aged by time T during

the separation of the twins.
To compute the aging of Bob, let s 7→ x(s) = (s, x̂(s)) be a

parametrization of Bob’s worldline in the inertial system of Al-

ice. We compute the time that has passed for Bob:

∫ T

0

√
−
〈〈
dx

ds
,

dx

ds

〉〉
ds =

∫ T

0

√

1 −
∣∣∣∣∣
∣∣∣∣∣
dx̂

ds

∣∣∣∣∣
∣∣∣∣∣
2

︸          ︷︷          ︸
≤1 and =1 only

if ‖ dx̂
ds ‖=0

ds < T.

We conclude: Travel keeps you young!

b

b

E1= (0, 0)

E2= (T, 0)

A B

Figure 30.. Twin paradox

This phenomenon was verified experimentally. In the Hafele-Keating experiment (1971) [4, 5],

four atomic clocks were flown on commerical flights around the world, once eastward and once

westward. A clock in an inertial system of the center of the earth would travel eastward in the

direction of the rotation of the earth. In the experiment all clocks are travelling but when trav-

elling eastward they are closer to an inertial observer than when travelling westward. From the

flight paths of the trips, our relativistic kinematic formulas predict that the westward travelling

clocks should have gained 280 nonseconds compared to the eastward trip. The measurements

gave 332 nanoseconds.

The difference is mostly due to another relativistic effect, namely the influence of gravitation.

Gravitation is weaker on board of the airplane while in high altitude and this has an impact on

time as we will see.
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Definition 1.26. Let x : I → R4 by a parametrization by proper time of the world line of a

timelike particle. The vector

u :=
dx

dτ

is called four-velocity of the particle (at x(τ)) and

a :=
d2x

dτ2

is called its four-acceleration.

Remark 1.27. By definition of a proper-time parametrization, the four-velocity is a curve in

H3. Hence its derivative, the four-acceleration, is always tangent to H3,

a(τ) =
du

dτ
(τ) ∈ Tu(τ)H

3
= u(τ)y.

In particular, by Lemma 1.12, four-acceleration is always spacelike.

Write x = (x0, x̂) for the world line of a particle. The observed velocity of x from the view of an

inertial observer with world line Re0 is given by

û

u0
,

as discussed before. The observed acceleration from the viewpoint of this inertial observer is

the change of velocity per change of time, which is

d

dx0

(
û

u0

)
=

1

u0

d

dτ

(
û

u0

)
=

1

u0

d
dτ û · u0 − d

dτu0 · û
(u0)2

=
â

(u0)2
− a0

(u0)3
û.

If the inertial frame is the rest frame of the particle at time τ = τ0, i.e., u(τ0) = e0, then the

four-acceleration satisfies a(τ0) = (0, â(τ0)) because a(τ0) y u(τ0) = e0 and hence a0(τ0) = 0.

Since u0(τ0) = 1 and a0(τ0) = 0, the observed acceleration is just â(τ0). The absolute value of

the observed acceleration in the rest frame is therefore

||â(τ0)|| =
√
〈〈a(τ0), a(τ0)〉〉.

1.5. Mass and energy

Definition 1.28. A force field F is a smooth mapping F : R4 × H3 → R4 such that for all

x ∈ R4 and u ∈ H3 we have

〈〈F(x, u), u〉〉 = 0.
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This means F(x, u) ∈ TuH3. We impose this condition because we know already that it is

fulfilled for the four-acceleration and we want to demand later that the force is proportional to

acceleration, as in Newton’s second law.

Let m0 > 0 be a constant which we interpret as the rest mass of a particle. Let the particle have

world line x in an inertial system. The analog to the Newton’s second law is then:

If the world line of a particle is parametrized by proper time and the particle is subject to the

force F, then
d

dτ
(m0u(τ)) = F(x(τ), u(τ)), (1.8)

or, equivalently,

m0
d2

dτ2
x(τ) = F

(
x(τ),

dx

dτ
(τ)

)
.

This is an ordinary differential equation of second order for x if F is given. Given any initial

conditions x(τ0) and u(τ0) = dx
dτ (τ), it has a unique solution. Hence special relativity is, as the

theory of classical mechanics, a deterministic theory.

In the rest frame of the particle, i.e. if u(τ0) = e0, the relation F(x(τ0), u(τ0)) y u(τ0) means

F(x(τ0), u(τ0)) = (0, F̂(x(τ0), u(τ0))).

Hence in the rest frame, we are left with the classical Newtonian equation of motion m0 â(τ0) =

F̂(x(τ0), u(τ0)).

Without the assumption that the given inertial frame is the rest system of the particle, we define

the relativistic mass

m(τ) :=
m0√

1 −
∣∣∣∣
∣∣∣∣ û(τ)
u0(τ)

∣∣∣∣
∣∣∣∣
2
.

The inertial frame is the rest frame of the particle at the event x(τ0) if and only if u(τ0) = e0, i.e.

if and only if m(τ0) = m0. Otherwise, we have m(τ) > m0. We then find

d

dx0

(
m

û

u0

)
= m0

d

dx0

û√
(u0)2 − ||û||2

= m0
d

dx0
û =

m0

u0

d

dτ
û =

m0

u0
â =

F̂

u0
.

This is the classical Newtonian equation of motion with mass m and force F̂
u0 . Therefore, the

relativistic mass is interpreted as the mass of the particle from the viewpoint of our inertial

observer and F̂
u0 as the observed force acting on the particle from the viewpoint of this observer.

Definition 1.29. For a particle with constant rest mass m0 and a world line parametrized by

proper time, the four-momentum is given by

p := m0 · u

where u denotes its four-velocity.
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Equation (1.8) then takes the form

d

dτ
p(τ) = F(x(τ), u(τ)).

As we have seen,

d

dx0

(
m · û

u0

)
=

F̂

u0

relativistic

mass

observed

velocity

observed

force

where m =
m0√

1−‖û/u0‖2
. From

−1 = 〈〈u, u〉〉 = −(u0)2
+ ||û||2

we find
1

(u0)2
= 1 −

∣∣∣∣∣
∣∣∣∣∣

û

u0

∣∣∣∣∣
∣∣∣∣∣
2

and therefore

u0
=

1√
1 −

∣∣∣
∣∣∣ û
u0

∣∣∣
∣∣∣2
.

Hence we can write m = u0m0 for the relativis-

tic mass. The time component of the vector equa-

tion (1.8) is then

u0 d

dx0
m =

d

dτ
(m0 · u0)

(1.8)
= F0(x, u) =

1

u0

〈
F̂, û

〉
,

because 0 = 〈〈F(x, u), u〉〉 = −F0u0
+

〈
F̂, û

〉
. This

implies

d

dx0
m =

〈
F̂

u0
,

û

u0

〉
.

0 0.5 1.0
0
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classical
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energy

v

Figure 31.. Classical versus relativistic

kinetic energy

This is the classical energy equation (1.2) with the relativistic mass m instead of the kinetic

energy E. Therefore we can interpret the relativistic mass as the energy of the particle as well.

E = m =
m0√

1 −
∣∣∣
∣∣∣ û
u0

∣∣∣
∣∣∣2
= m0︸︷︷︸

rest

energy

+
m0

2

∣∣∣∣∣
∣∣∣∣∣

û

u0

∣∣∣∣∣
∣∣∣∣∣
2

︸    ︷︷    ︸
classical

kinetic

energy

+
3m0

8

∣∣∣∣∣
∣∣∣∣∣

û

u0

∣∣∣∣∣
∣∣∣∣∣
4

+ O

(∣∣∣∣∣
∣∣∣∣∣

û

u0

∣∣∣∣∣
∣∣∣∣∣
6)

︸                                      ︷︷                                      ︸
relativistic kinetic energy

,

where we used that 1√
1−x
= 1 + 1

2
x + 3

8
x2
+O(x3). Since energy has has the same physical units
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as mass · velocity2 we arrived at the famous formula

Ephys = mphys · c2

So far, we only discussed point particles. In classical continuum mechanics extended bodies

possess

(1) a mass density: ̺ : R × R3 → R; the total mass of a body at time t is then given by
∫

R3

̺(t, x̂) dx1 dx2 dx3,

(2) a momentum density: p : R × R3 → R3; the total momentum of the body at time t is then

given by ∫

R3

p(t, x̂) dx1 dx2 dx3,

(3) a stress tensor: σ : R × R3 → {symmetric bilinear forms on R3}. To give a physical

interpretation of σ let b1, b2, b3 be a diagonalizing orthonormal basis of σ|(t,x̂). Then

σ|(t,x̂)(bi, bj) =


λi if i = j,

0 if i , j.

At time t and at the point x̂, the body exerts pressure of strength λi in direction bi.

x
b

body

σ|(t,x)
x
b

b1
b2

body

Figure 32.. Stress tensor

In relativity, these entities are combined to the stress-energy tensor

T : R4 → {symmetric bilinear forms on R4}, T =


̺ p⊤

p σ

 .

To every extended body we assign such a T, with the following physical interpretation. For an

observer B whose world line has the four-velocity u at the event x,

T|x(u, u) = mass density of the body at the event x, as observed by B

= energy density of the body at the event x, as observed by B,

T|x(u, e) =
〈〈

momentum density of the body as observed by B at event x, e
〉〉

where e y u,

T|x(e, e′) = (stress tensor of the body at event x, as observed by B)(e, e′) where e, e′ y u.
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Example 1.30. (1) Vacuum: T = 0.

(2) Dust: Our universe is filled with dust. So we have a nonnegative mass density ̺ : R4 → R.

The dust particles do not experience any pressure, hence no stresses. The four-velocities of the

dust particles define a timelike, future-directed unit vector field u.

u

Figure 33.. Observer field

Since p is proportional to ̺u, an observer riding on a dust particle (i.e. with four-velocity u) will

observe T(u, e) for any e y u. Thus for observers with four-velocity u, the momentum density

and stresses vanishes. Hence

T|x(y, z) = ̺(x) 〈〈y, u(x)〉〉 · 〈〈z, u(x)〉〉 .

(3) Ideal Liquid: For an ideal liquid we also have a nonnegative mass density ̺ : R4 → R and

the worldline of the molecules yield an four-velocity vector field u : R4 → H3. Again, the

momentum density vanishes for an observer with four-velocity u. In addition, we experience

pressure which is isotropic, i.e. the same from all directions. Thus σ|x = λ(x) 〈·, ·〉. Again,

the four-velocities of the liquid molecules define a timelike, future-directed unit vector field u.

Hence

T|x(y, z) = (̺(x) + λ(x)) 〈〈y, u(x)〉〉 · 〈〈z, u(x)〉〉 + λ(x) 〈〈y, z〉〉 .
Indeed, for e, e′ ∈ uy we find

T|x(u(x), u(x)) = (̺(x) + λ(x)) 〈〈u(x), u(x)〉〉 · 〈〈u(x), u(x)〉〉 + λ(x) 〈〈u(x), u(x)〉〉
= ̺(x) + λ(x) − λ(x) = ̺(x),

T|x(u(x), e) = 0,

T|x(e, e′) = λ(x)
〈〈

e, e′
〉〉
.

Later we will learn about a more conceptual way of finding the energy stress tensor for different

kinds of matter.

1.6. Closing remarks about special relativity

Let us summarize briefly the structure of special relativity, now making use of differential ge-

ometric language. Space and time are joined to the 4-dimensional spacetime. The Postulate of

Special Relativity states that the mathematical model for spacetime is a time-oriented Lorentz

manifold M which is isometric to (R4, gMink). An isometry M → (R4, gMink) preserving the time

orientation is called an inertial frame. The coordinates (x0, x̂) that are assigned to an event by

such an isometry are the time and space coordinates from the point of view of an observer with

world line R · e0.
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The world lines of particles slower than light are the timelike smooth curves in M. The world

lines of particles moving at the speed of light are null curves. The world lines of particles not

subject to any acceleration are geodesics (straight lines) in M.

LetH := {ξ ∈ T M | g(ξ, ξ) = −1 and ξ is future directed}. An external force is given by a vector

field F along the footpoint map π : H → M with g(F(ξ), ξ) = 0 for all ξ ∈ H . We have an

analog to Newton’s second law,

m0
∇
dτ

dx

dτ
= m0

d2

dτ2
x(τ) =

d

dτ
(m0u)(τ) = F(x(τ), u(τ)).

This equation can be studied in arbitrary coordinate systems, not only in inertial frames.

All relevant physical objects possess a stress-energy tensor containing information about the

mass density, momentum density and stress density.

1.7. Exercises

1.1. A spacecraft travels from earth to a distant object X, its rear engine inducing constant

acceleration (=gravitational acceleration) g = 9.81ms−2. At half the distance, the spacecraft is

turned over (so its rear engine now induces the same deceleration).

According to classical kinematics, how long does the journey take and what is the maximal

velocity for

(a) X = moon (400.000 km),

(b) X = mars (56-400 million km),

(c) X = Proxima Centauri (4,3 light years) und

(d) X = Andromeda galaxy (2 million lightyears)?

Remember: 1 light year ≈ 9.461 · 1012km.

1.2. Show that for L ∈ Mat(4 × 4,R) the following are equivalent:

L · I1,3 · L⊤ = I1,3 ⇔ L⊤ · I1,3 · L = I1,3.

1.3. (a) Show that each Galilean transformation is invertible and that its inverse is again a

Galilean transformation.

(b) Show that the set of Galilean tranformations with composition forms a group.

(c) Show that each Lorentz transformation is invertible and that its inverse is again a Lorentz

transformation.

(d) Show that L with composition forms a group.

(e) Show that each Poincaré transformation is invertible and that its inverse is again a Poincaré

transformation.

(f) Show that P with composition forms a group.

1.4. Determine all Poincaré transformations of R4 which are also Galilean transformations.

Why is this subgroup of transformations not sufficient to derive (1.1)?
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1.5. (a) Show that L↑+ · L↑+ ⊂ L↑+, L↑+ · L↓+ ⊂ L↓+, and similarly for all other combinations.

(b) Conclude from a) that L↑+, L+, L↑, and L↑+ ⊔ L↓− are subgroups of L.

1.6. (a) Let L ∈ L with Le0 = e0. Show that L is of the form

L =


1 0

0 A



with A ∈ O(3).

(b) Let L ∈ L↑+ with Le2 = e2 and Le3 = e3. Show that L is a boost.

1.7. Use the law of cosines for sides to show that the sum of angles in a hyperbolic triangle is

smaller than 180◦,
α + β + γ < π.

1.8. Let B1 and B2 be two inertial observers. Let P be a Poincaré transformation with linear

part L (a Lorentz transformation). Suppose B2 has the world line P(Re0) in the inertial system

of B1. Suppose furthermore that there is an external force with force field F from the viewpoint

of B1 and F̃ from the viewpoint of B2.

(a) Prove the relation

F̃(x̃, ũ) = L−1 · F(Px̃, L · ũ).

(b) For an electromagnetic field show the corresponding relation

F̃ |x̃(ũ, ṽ) = F |Px̃(Lũ, Lṽ).

1.9. Inertial observer B observes the constant electric field Ê = (1, 0, 0) but no magnetic field,

B̂ = (0, 0, 0).

(a) In B’s inertial system, compute the world line x of a particle with charge q, rest mass m0,

x(0) = (0, 0, 0, 0) and dx
dτ (0) = e0.

(b) Is there an inertial observer B2 who will observe a vanishing electric field ˜̂E = (0, 0, 0) in

this situation?

1.10. Let P be a planet being at rest in an inertial system. Planet P has a moon M circling

around P at constant speed and constant distance (as observed by P). A spaceship S starts on P

and moves with constant velocity with respect to P, hence defining a second inertial system. Do

observes on S also observe a constant distance between P and M? If not, what kind of curve is

the orbit of M around P as observed by S?

Discuss these questions

(a) when S moves perpendicularly to the plane E containing the orbit of the moon,

(b) when S moves within E.
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1.11. Two trains are standing on the same track at a certain distance. They are connected by a

tight rod. Both trains depart at the same time and start traveling at the same constant acceleration.

Will the rod tear?

1.12. Albert is traveling at night in a train that is moving at constant velocity v. As usual there

are problems when traveling with Deutsche Bahn; this time there is an electricity failure so that

it becomes totally dark. Albert turns on his flash light. Near which seat does he have to position

himself so that his light reaches the tip and the rear of the train at the same time, once from his

point of view and once from the point of view of an observer watching the train from outside?

Figure 34.. Train travel

Answer these questions

(a) for v = c/2,

(b) for v = 4c/5.

1.13. Let s 7→ x(s) be a smooth parametrized curve in R4.

(a) Show: if x is timelike, i.e., if ẋ(s) is timelike for all s, then x(s2)−x(s1) is timelike whenever

s1 , s2.

(b) Show: if, in addition, x is future directed, i.e., if ẋ(s) ∈ Z↑ for all s, then x(s2) − x(s1) is

future directed whenever s1 < s2.

(c) Does (a) also hold if “timelike” is replaced by “lightlike”?

1.14. Let m0 be the rest mass and m the relativistic mass of a particle w.r.t. an inertial observer.

Show that the observed momentum p̂ of the particle satisfies

‖p̂‖ =
√

m2 − m2
0
.

1.15. Redo Exercise 1.1, now using relativity theory instead of Newtonian mechanics. Compute

the travel times from the viewpoint of the crew on board the spacecraft as well as from the

viewpoint of those left on earth. Moreover, compute the maximal velocities relative to the earth

that the spacecraft reaches during the journey.2

2The cosmic travel planner at https://math.cbaer.eu/CTP/CTP.html can be used to compute these

travel times and maximal velocities for arbitrary destinations.

https://math.cbaer.eu/CTP/CTP.html


2. Einstein’s field equations

The goal is now to include gravitation into relativity theory. From now on the reader will be

assumed to be familiar with differential geometry. We start by quickly reviewing classical New-

tonian gravity theory.

2.1. Classical theory of gravitation

Let x, y ∈ R3 be the position vectors of two point particles with masses m and M, respectively.

Newton’s law of gravitation says that in a Galilean inertial frame y exerts the force

F = − GmM

||x − y||2
x − y

||x − y|| (2.1)

on x. Here G = 6, 673 · 10−11 m3kg−1s−2 is the gravitational constant.

We make the simplifying assumption that y is fixed at y = 0 ∈ R3. This can be justified for

instance if M ≫ m. Since the gravitational force exerted by x and y on one another has the same

absolute value, it will have a strong impact on the light body x but hardly affect the heavy body

y. Combining the law of gravitation and Newton’s second law F = mẍ we get

ẍ = −GM

||x||3
x. (2.2)

Remark 2.1. The mass m of x has canceled in (2.2), so the orbit of x does not depend on its

mass. A priori, one would have to distinguish between the inertial mass minert occurring in

Newton’s second law F = minert · ẍ and the gravitational mass mgrav in

F = −
GmgravMgrav

||x − y||2
x − y

||x − y|| .

Equation (2.2) and hence the equality minert = mgrav of these two concepts of mass is experi-

mentally well tested (see https://www.youtube.com/watch?v=5C5_dOEyAfk) and

is therefore considered an empirical fact.

Define the angular momentum per mass by L(t) := x(t) × ẋ(t).

Lemma 2.2 (Preservation of angular momentum). If x satisfies equation (2.2) then L is

constant.

https://www.youtube.com/watch?v=5C5_dOEyAfk


44 2. Einstein’s field equations

Proof. We compute
d

dt
L = ẋ × ẋ︸︷︷︸

=0

+x × ẍ
(2.2)
= −GM

||x||3
x × x︸︷︷︸
=0

= 0. �

Remark 2.3. Assume that x satisfies (2.2) so that L is constant. If L , 0, then x(t) ⊥ L for all

t. Hence x is confined to the plane perpendicular to L.

If L = 0, then x(t) = 0 or ẋ(t) = λ(t)x(t), that is

x(t) = x(t0) · e
∫ t

t0
λ(s) ds

.

This means x(t) lies on the straight line through 0 and x(t0) (with t0 fixed). In this case x is even

confined to a one-dimensional subspace.

Let L , 0. We choose the coordinate system such that L = ‖L‖ · e3. Hence x stays in the

e1-e2-plane. We introduce polar coordinates (r, ϕ) in the e1-e2-plane:

x1
= r cos ϕ and x2

= r sin ϕ.

We express (2.2) in polar coordinates:

ẍ =
∇
dt

ẋ =
∇
dt

(
ṙ
∂

∂r
+ ϕ̇

∂

∂ϕ

)

covariant derivative

w.r.t. geukl
= r̈

∂

∂r
+ ṙ
∇
dt

∂

∂r
+ ϕ̈

∂

∂ϕ
+ ϕ̇
∇
dt

∂

∂ϕ

= r̈
∂

∂r
+ ṙ∇ṙ ∂

∂r
+ϕ̇ ∂

∂ϕ

∂

∂r
+ ϕ̈

∂

∂ϕ
+ ϕ̇∇ṙ ∂

∂r
+ϕ̇ ∂

∂ϕ

∂

∂ϕ
(2.3)

In polar coordinates (r, ϕ) the metric coefficients of the Euclidean metric geukl are

(gi j) =


1 0

0 r2



and the Christoffel symbols are easily computed to be

Γ
2
12 = Γ

2
21 =

1

r
, Γ

1
22 = −r, and all other Γk

i j = 0.

Therefore

∇ṙ ∂
∂r
+ϕ̇ ∂

∂ϕ

∂

∂r
= ṙ∇ ∂

∂r

∂
∂r︸︷︷︸

=0

+ϕ̇∇ ∂
∂ϕ

∂
∂r︸︷︷︸

=
1
r
∂
∂ϕ

=
ϕ̇

r

∂

∂ϕ



2.1. Classical theory of gravitation 45

and

∇ṙ ∂
∂r
+ϕ̇ ∂

∂ϕ

∂

∂ϕ
= ṙ∇ ∂

∂r

∂

∂ϕ︸ ︷︷ ︸
=

1
r
∂
∂ϕ

+ϕ̇∇ ∂
∂ϕ

∂

∂ϕ︸ ︷︷ ︸
=−r ∂

∂r

=
ṙ

r

∂

∂ϕ
− ϕ̇r

∂

∂r
.

Inserting this into (2.3) yields

∇
dt

ẋ = (r̈ − ϕ̇2r)
∂

∂r
+

(
ϕ̈ + 2ϕ̇

ṙ

r

)
∂

∂ϕ
.

Now (2.2) reads

∇
dt

ẋ = −GM

r3
r
∂

∂r
= −GM

r2

∂

∂r
.

so that (2.2) takes the form

r̈ − ϕ̇2r = −GM

r2
, ϕ̈ + 2ϕ̇

ṙ

r
= 0 (2.4)

in polar coordinates.

Lemma 2.4 (Kepler’s Second Law). Let x satisfy (2.2). Then

r2ϕ̇ = ± ||L||

is constant.

Proof. We compute

||L|| = ||x × ẋ||

=

∣∣∣∣∣∣

∣∣∣∣∣∣r
∂

∂r
×

(
ṙ
∂

∂r
+ ϕ̇

∂

∂ϕ

)∣∣∣∣∣∣

∣∣∣∣∣∣

= r|ϕ̇| ·
∣∣∣∣∣
∣∣∣∣∣
∂

∂r
× ∂

∂ϕ

∣∣∣∣∣
∣∣∣∣∣

= r|ϕ̇| ·
∣∣∣∣∣
∣∣∣∣∣
∂

∂r

∣∣∣∣∣
∣∣∣∣∣

︸︷︷︸
=1

·
∣∣∣∣∣
∣∣∣∣∣
∂

∂ϕ

∣∣∣∣∣
∣∣∣∣∣

︸︷︷︸
=r

= r2|ϕ̇|.

b0

∂

∂r

∂

∂ϕ

Figure 35.. Polar coordinate

fields
. �

After possibly applying a reflection, we can w.l.o.g. assume r2ϕ̇ = ||L||.
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Remark 2.5. Kepler’s second law is often formulated in a more geometrical way as follows:

The line segment from 0 to the point x(t) sweeps out equal areas during equal intervals of time.

To see this, we compute the area of the surface that

is bordered by the line segments from 0 to x(t0) and

x(t1) respectively (t0 < t1) and the corresponding

segment of the orbit.

From differential geometry, it is known that the area

element is given in polar coordinates by

0 x(t0)

x(t1)

Figure 36.. Kepler’s second

law

√
det(gi j) dr dϕ =

√√√√√√
det


1 0

0 r2

 dr dϕ = r dr dϕ.

Employing the substitution rule for integration, we find for the area

∫ ϕ(t1)

ϕ(t0)

∫ r(ϕ)

0

r dr dϕ =

∫ ϕ(t1)

ϕ(t0)

r(ϕ)2

2
dϕ =

1

2

∫ t1

t0

r(t)2 ϕ̇(t) dt =
||L||
2

(t1 − t0).

So indeed, the area swept out is proportional to the time elapsed.

Now we restrict ourselves to the interesting case L , 0. By Lemma 2.4 we have r(t) > 0 and

ϕ̇(t) , 0 for all t. Thus ϕ is strictly monotonic and we can define the auxiliary smooth function

u : I → R, given by

u(s) :=
1

r(ϕ−1(s))
i.e., u(ϕ(t)) =

1

r(t)
.

For the sake of brevity we write a dot for d
dt

and a prime for d
ds

.

Lemma 2.6 (Orbit Equation). Let x satisfy (2.2). Then we have

u′′ + u =
GM

||L||2
.

Proof. From r2ϕ̇ = ||L|| we see

ϕ̇(t) =
||L||

r(t)2
= ||L|| · u(ϕ(t))2.

Hence

ṙ(t) = − u′(ϕ(t))

u(ϕ(t))2
· ϕ̇(t) = − ||L|| · u′(ϕ(t))
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and therefore

r̈(t) = − ||L|| · u′′(ϕ(t)) · ϕ̇(t) = − ||L||2 · u′′(ϕ(t)) · u(ϕ(t))2.

Inserting this into (2.4) yields

−GMu2
= − ||L||2 u′′u2 − ||L||2 u4 1

u
= − ||L||2 u2(u′′ + u). �

The orbit equation can be solved explicitly. Its general solution is

u(ϕ) =
GM

||L||2
+ A cos(ϕ − ϕ0)

where A, ϕ0 ∈ R are constants. After applying a rotation in the e1-e2-plane if necessary, we can

assume w.l.o.g. that ϕ0 = ϕ(t0) = 0 and A ≥ 0. We then have

r(t) =
1

GM

||L||2 + A cos(ϕ(t))
=

||L||2 /GM

1 + e · cos(ϕ(t))
,

where e :=
A||L||2
GM

is called the eccentricity. Geometrically, the solution is

(1) an ellipse1 for 0 ≤ e < 1 (Kepler’s first law),

(2) a parabola for e = 1,

(3) a hyperbola for e > 1.

e = 0

circle

e = 3
4

ellipse

e = 1

parabola

e = 2

hyperbola

Figure 37.. Kepler orbits

Defining the gravitational potential V : R3 \ {0} → R by

V(x) := −GM

||x||
1As a special case we get a circle for e = 0.
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we have

−gradV = −GM

r2

∂

∂r
= −GM

r3
x =

1

m
F.

For the energy we have

kinetic energy: Ekin =
m

2
||ẋ||2

potential energy: Epot = m · V(x)

total energy: E = Ekin + Epot.

Lemma 2.7 (Energy Equation). Let x satisfy (2.2). Then

2

m
E = ṙ2

+
||L||2
r2
− 2GM

r

is constant.

Proof. We have

||ẋ||2 =
∣∣∣∣∣
∣∣∣∣∣ṙ
∂

∂r
+ ϕ̇

∂

∂ϕ

∣∣∣∣∣
∣∣∣∣∣
2

= ṙ2 · 1 + ϕ̇2 · r2
= ṙ2
+
||L||2
r2

because of ϕ̇ = ||L||
r2 . This implies

2

m
E = ||ẋ||2 − 2GM

||x|| = ṙ2
+
||L||2
r2
− 2GM

r
.

Therefore

2

m

d

dt
E = 2ṙr̈ − 2

||L||2 ṙ

r3
+

2GMṙ

r2
= 2ṙ

(
r̈ − ||L||

2

r3
+

GM

r2

)
= 2ṙ

(
r̈ − ϕ̇2r +

GM

r2

)
= 0

by the equation of motion (2.4). �

We now define the effective potential

W(r) :=
||L||2
r2
− 2GM

r
.

By the energy equation ṙ2
+W(r) is constant. From ṙ2 ≥ 0 we get that W(r) ≤ const. The energy

diagram is shown in Figure 38..

Remark 2.8. In accordance with (2.1), the graviational force exerted by an extended body with

mass distribution ̺ on a point particle with mass m is given by

F = −Gm

∫

R3

̺(y)

||x − y||2
x − y

||x − y||dy.
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0 1 2 3 4 5 6 7 8

0

−1

1

2

r

W(r)

E

b

b b

b

b

circular orbit

elliptic orbit

parabolic orbit

hyperbolic orbit

Figure 38.. Energy diagram in Newtonian gravity

2.2. Equivalence principle

Problem. In Newtonian mechanics, moving a heavy mass will instantaniously change the grav-

itational force generated by it everywhere. This can be used to transmit signals with infinite

velocity. This contradicts the requirement from special relativity that no information can be

tranmitted at a speed higher than that of light. The description of gravity in relativity requires

fundamentally new ideas.

Let us go back and investigate what the experimentally confirmed equality of inertial and gravi-

tational mass, minert = mgrav, tells us. Consider the four situations in depicted in the table below.

A. Our observer is floating in outer space and feels no force. The observer is not accelerated and

is at rest in an inertial system.

B. The observer turns on the engine and feels the force generated by the acceleration of the

spaceship. The force is proportional to the inertial mass of the observer. Being accelerated, the

observer is no longer at rest in an inertial system.

C. The observer is standing still on the surface of the earth. The observer is at rest in an inertial

frame but feels the gravitational force of the earth. This force is proportional to the heavy mass

of the observer.

D. The spaceship together with the observer is falling freely towards the earth. This is not going

to end well but in the meantime the observer feels no force. Being accelerated, the observer is

not at rest in an inertial system.

By means of physical experiments, our observer (under complete isolation from the outside

world) cannot distinguish situation A from D nor B from C. This known the equivalence prin-

ciple and confirms that minert = mgrav. On the other hand, A and C are inertial observers, but B

and D are not.

Therefore, in a theory incorporating gravity, the observers in A and D should be considered

equivalent (similarly for B and C) and we have to give up the concept of inertial frames. In-

deed, realistic coordinate systems are usually only local and do not describe the whole universe

anyway. They may locally approximate idealized inertial frames. Since we no longer demand

existence of global inertial frames we will no longer insist on physical spacetime being modeled

by Minkowski space. From now on, spacetime will be modeled by a four-dimensional Lorentz

manifold which is not necessarily Minkowski space. The linearization of a Lorentz manifold M
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not accelerated accelerated

in weight-

lessness

A

F = 0

a

B

F = minerta

in a

graviational

field

a

C

F = mgrava

free

fall

D

F = 0

Figure 39.. Equivalence principle

at a point p ∈ M, namely the tangent space TpM, is isometric to Minkowski space. In this sense

special relativity will still be an approximation to general relativity.

2.3. Time orientations

We will now discuss properties of this Lorentz manifold so that it can be considered a reasonable

candidate for the mathematical model of spacetime. We are able to distinguish between future

and past as we can remember the past but not the future. Mathematically, this is reflected by the

concept of time orientation.

Definition 2.9. A time orientation on a Lorentz manifold M is a continuous mapping that

assigns to each p ∈ M one of the two connected components of

Zp := {v ∈ TpM | g|p(v, v) < 0}.

Continuity of the time orientation means the follwing: Write Z↑p for the connected component

selected by the time orientation. We demand that for each p ∈ M there is an open neighborhood

U of p and a continuous vector field v on U such that v(q) ∈ Z↑q for all q ∈ U.
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b

p

U

M

b p

M

TpM

Figure 40.. Time orientation

Example 2.10. In special relativity, we did not have to worry about time orienations because

Minkowski space carries a canonical time orienation. Since Minkowski space R4 is a linear

space, each tangent space can be canonically identified with Minkowski space itself. We have

implicitly used the constant time orientation given by p 7→ Z↑ = {x ∈ R4 | 〈〈x, x〉〉 < 0 and x0 >

0}.

Definition 2.11. A Lorentz manifold is called time orientable if has a time orientation. A

Lorentz manifold with a selected time orientiation is called time oriented.

Example 2.12. Not every Lorentz manifold is time orientable. The following picture shows two

different Lorentz metrics on the same manifold R × S 1 so that the first Lorentz manifold is time

orientable whereas the second is not.

time orientable not time orientable

Figure 41.. Time orientability

Definition 2.13. Let M be a time oriented Lorentz manifold with time orientation p 7→ Z↑p.

Timelike tangent vectors v ∈ TpM are called future directed if v ∈ Z↑p and past directed if

−v ∈ Z↑p. Similarly, lightlike tangent vectors v ∈ TpM are called future directed if v ∈ ∂Z↑p
and past directed if −v ∈ ∂Z↑p.
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Here ∂Z↑p denotes the boundary of Z↑p in TpM.

A differentiable curve c : I → M in a Lorentz manifold will be called timelike if ċ(t) is timelike

for all t ∈ I. Lightlike and spacelike curves are defined in the same way. If M is time oriented

then we can also talk about future-directed and past-directed timelike or lightlike curves.

2.4. Einstein’s field equations

From now on, gravitation will no longer be considered as an external force in contrast to the

electromagnetic force, for instance. Instead, it will be modeled by the choice of Lorentz manifold

M itself.

In special relativity, the world lines of point particles subject to no force are straight lines. These

are the geodesics of Minkowski space. Generalizing this, the Lorentz manifold has to chosen in

such a way that the world lines of point particles that move only under the influence of gravitation

will be the geodesics of the spacetime.

The big question is now: Which Lorentz manifold should be taken? What is the connection

between geometry and physics?

On the physical side we will use the stress-energy tensor T of the matter generating the gravi-

tation. On the geometric side we will use the Einstein tensor G. What is this? Recall the basic

curvature tensors of a Lorentz manifold:

1. The Riemann curvature tensor

R : TpM × TpM × TpM × TpM → R.

2. The Ricci curvature

ric : TpM × TpM → R, ric(ξ, η) :=

n∑

i=1

εiR(ξ, ei, ei, η),

where e1, . . . , en is a generalized orthonormal basis, that is

g(ei, ej) = εiδi, j with εi = ±1.

The map ric is a symmetric bilinear form on TpM.

3. The scalar curvature

scal(p) :=

n∑

i=1

εiric(ei, ei).

Then scal : M → R is a function on M.

4. The Einstein tensor

G := ric − 1
2
scal· g.

Why do we use G and not simply ric?
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Lemma 2.14. On any semi-Riemannian manifold we have 2div(ric) = dscal and hence

div(G) = 0.

Proof. The divergence of a symmetric (0, 2)-tensor field like ric is a 1-form defined by

div(ric)(X) =
∑

j

ε j∇ej
ric(ej, X)

where ej is a generalized orthonormal tangent frame, g(ej, ek) = ε jδ jk with ε j = ±1. We now

check the formula 2div(ric) = dscal at a fixed point p in the manifold and we may assume that X

and the tangent frame are synchronous at p, i.e., ∇X = ∇ej = 0 at p. Using the second Bianchi

identity we get

dscal(X) = ∂X

∑

jk

ε jεkg(R(ej, ek)ek, ej)

=

∑

jk

ε jεkg(∇XR(ej, ek)ek, ej)

= −
∑

jk

ε jεkg((∇ej
R(ek, X) + ∇ek

R(X, ej))ek, ej)

= −
∑

jk

ε jεk(g(∇ej
R(ek, X)ek, ej) + g(∇ej

R(X, ek)ej, ek))

= 2
∑

jk

ε jεkg(∇ej
R(ek, X)ej, ek)

= 2
∑

j

ε j∇ej
ric(X, ej)

= 2div(ric)(X). �

The stress-energy tensor T turns out to be divergence free and hence so should be its geometric

counterpart. This is the reason for preferring G over ric.

We now postulate the Einstein field equation.

κ · T = G (EFE)

Here κ is a universal constant. The value of κ is determined by transition to the Newtonian limit.

If

(1) T is the stress-energy tensor of dust (only mass density),

(2) the Einstein field equation is replaced by its linearization and

(3) c tends to infinity,

then the geodesic equations become Newton’s equations of motions with

κ =
8πG

c4
≈ 2, 07 · 10−48 s2

g · cm
.
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It is possible to derive the Einstein field equation from a variational principle and one can give

various heuristic arguments for it. Ultimately however, one has to verify it by checking the

predicted results experimentally.

Definition 2.15. A Lorentz manifold M is called vacuum solution if T ≡ 0 and hence (by the

Einstein field equation) G ≡ 0.

Example 2.16. Let M be Minkowski space. Here we even have R ≡ 0.

Lemma 2.17. In general, on 4-dimensional semi-Riemannian manifolds, we have

ric = G − 1
2

4∑

i=1

εi · G(ei, ei) · g.

Proof. We compute

4∑

1=1

εi ·G(ei, ei) =

4∑

i=1

εi(ric(ei, ei) − 1
2
scal · g(ei, ei))

= scal − 1
2
scal · 4

= −scal

and therefore

G − 1
2

4∑

i=1

εi ·G(ei, ei) · g = ric − 1
2
scal · g − 1

2
(−scal · g) = ric. �

Corollary 2.18. We have G = 0 if and only if ric = 0. Hence by (EFE) the vacuum solutions

are exactly the Ricci-flat Lorentz manifolds. �

Since the metric itself is divergence free, i.e., divg = 0, the tensor G+Λg is also divergence free

for any constant Λ. Therefore G + Λg could replace G in the field equation which leads to the

Einstein field equation with cosmological constant:

G + Λ · g = κ · T, (EFEΛ)

where Λ ∈ R is called the cosmological constant. The general opinion whether or not one

should allow a nonzero cosmological constant has changed various times. Einstein once consid-

ered its introduction as the “greatest stupidity of his life” but changed his mind later. Currently,
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a nonzero cosmological constant is often considered as necessary to correctly explain the obser-

vations.

Example 2.19 (deSitter spacetime). Let r > 0. Set

S4
1(r) := {x ∈ (R5, gMink)| 〈〈x, x〉〉 = r2}.

A Lorentz metric is obtained by restricting 〈〈·, ·〉〉 to the tangent spaces of S4
1
(r). This way, one

gets a four-dimensional Lorentz manifold. A time orientation is defined by requiring x0 > 0. A

calculation shows

G = − 3

r2
g.

Hence S4
1
(r) is a vacuum solution of (EFEΛ) with Λ = 3

r2 .

x0

S 4
1
(r)

Figure 42.. DeSitter spacetime

Convention. From now on, we will work with physical units chosen in such a way that the

speed of light and the gravitational constant are equal to 1. This leads to κ = 8π.

From now on we will accept the postulate of general relativity:

Physical spacetime can be identified with a time-oriented 4-dimensional Lorentz manifold. The

world lines of point particles moving only under the influence of gravitation are geodesics,

timelike for massive particles and lightlike for particles of rest mass 0. The curvature of the

manifold and the matter distribution in spacetime are related by the Einstein field equation,

possibly with cosmological constant.

2.5. Exercises

2.1. Explain why Newtonian gravitation theory is incompatible with special relativity.
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2.2. Using Newtonian gravitation theory, prove Kepler’s third law which states that for elliptic

orbits,

GM · (orbital period)2
=

4π2

(1 + e)3
· r3

max.

2.3. Using Newtonian gravitation theory, compute the graviational force of a round homoge-

neous planet and that of a homogeneous spherical shell.

More precisely, let ̺0 > 0 and 0 < r < R. Compute the graviational force vector field for the

mass distributions:

(a)

̺(x) =


̺0 if ‖x‖ ≤ R,

0 else.

(b)

̺(x) =


̺0 if r ≤ ‖x‖ ≤ R,

0 else.

2.4. On a homogeneous round planet we drill a tunnel from a point on the surface all the way

through the center of the planet to the antipodal point on the surface. Compute the trajectory of

a point particle falling into the tunnel.

(We assume that the width of the tunnel is so thin that its influence on the graviational field of

the planet is negligible. Hence you can use the graviational force you computed in Exercise 2.3.)

2.5. Let M = R × S 1. Give two explicit examples of Lorentz metrics on M such that the first

one is time orientable and second one is not as indicated in Example 2.12. Express them in the

coframes dt and dθ where t is the standard coordinate on R and θ the angular coordinate on S 1.

2.6. Let ̺ : R4 → R be the mass density and u : R4 → R4 be the unit velocity field of dust on

Minkowski space as described in Example 1.30 (2). Let T be its energy-stress tensor. Show that

the following are equivalent:

(i) div(T) = 0,

(ii) The integral curves of u (the stream lines of the dust) are straight lines and div(̺u) = 0.

2.7. Let M > 0. Show that there is no Riemannian metric on R2\{(0, 0)⊤} such that its geodesics

are precisely Kepler’s planetary orbits with central mass M. What if M = 0?

Hint: What happens in a Riemannian manifold if two geodesics intersect tangentially?

2.8. Compute the curvature tensor of deSitter space in Example 2.19 using the Gauss equation

and verify that deSitter space is a vacuum solution with cosmological constant Λ = 3
r2 .



3. Models for the whole universe

We start by searching Lorentz manifolds which can serve as good models for the whole physical

spacetime, i.e. for the whole universe at all times. We will neglect the influence of small-scale

structures such as individual stars, galaxies etc. on the geometry of the manifold. In other words,

we will pretend that the universe is spatially homogeneous.

3.1. Robertson-Walker spacetimes

Our ansatz is to describe the “spatial part” of the universe by a three-dimensional Riemannian

manifold (S , gS ) which is connected and complete, i.e. geodesics are defined for all times. Let

us moreover assume that the spatial universe looks the same in each direction, at least when

observing objects not too far away. This property is called local isotropy and is formulated

mathematically as follows.

Definition 3.1. A Riemannian manifold S is called locally isotropic, if for each p ∈ S and

all X, Y ∈ TpS with ||X|| = ||Y || there exists an open neighborhood U of p and an isometry

Φ : U → U with Φ(p) = p and dΦ|p(X) = Y .

On a 3-dimensional locally isotropic Riemannian manifold we have for the sectional curvature

that K(E) = K(E′) whenever E, E′ ⊂ TpS are 2-dimensional subspaces. The sectional curvature

only depends on the base point p ∈ M but not on the choice of tangential plane over p. This can

be seen as follows:

Given planes E, E′ ⊂ TpS choose X, Y ∈ TpS with ||X|| = ||Y || = 1 and X ⊥ E as well as Y ⊥ E′.
Then an appropriate local isometry Φ takes X to Y , i.e., dΦ|p(X) = Y . Hence dΦ|p(E) = E′.
This implies

K(E′) = K(dΦ|p(E)) = K(E)

because isometries preserve the curvature.

Theorem 3.2 (Schur). Let M be a connected Riemannian manifold of dimension n ≥ 3. If

the sectional curvature only depends on the base point then it is constant.

Proof. Let the sectional curvature depend only on the base point. This means there is a function

κ : M → R such that K(E) = κ(p) for all 2-dimensional subspaces E ⊂ TpM. The Riemann
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curvature tensor and the sectional curvature contain the same information, they determine each

other. In our case this implies

R(X, Y,U,V) = κ · (g(X,V)g(Y,U) − g(X,U)g(Y,V))

where g denotes the metric. Let X ∈ TpM be a unit vector. Since the dimension of M is at least

3 we can find Y, Z ∈ TpM such that X, Y, Z are orthonormal. The second Bianchi identity implies

0 = ∇XR(Y, Z, Z, Y)+ ∇YR(Z, X, Z, Y) + ∇ZR(X, Y, Z, Y)

= ∂Xκ · (g(Y, Y)g(Z, Z) − g(Y, Z)g(Y, Z))

+ ∂Yκ · (g(Z, Y)g(X, Z) − g(Z, Z)g(X, Y))

+ ∂Zκ · (g(X, Y)g(Y, Z) − g(X, Z)g(Y, Y))

= ∂Xκ.

Since X is arbitrary this implies dκ = 0 and since the manifold is connected we find that κ is

constant. �

Note that Schur’s theorem does not hold in dimension 2. The Gauss curvature of a surface is

nonconstant in general.

Corollary 3.3. A connected locally isotropic Riemannian manifold of dimension 3 has con-

stant curvature. �

Remark 3.4. If (N, g) is a Riemannian manifold with sectional curvature K and if α > 0, then

the Riemannian manifold (N, c2 · g) has the sectional curvature 1
α2 K. For this reason it suffices

to consider the cases K ≡ ε = −1, 0, 1.

Example 3.5. The prime examples are Euclidean space (R3, geucl) for vanishing curvature (ε =

0), the standard sphere (S 3, gstd) for ε = 1 and hyperbolic space (H3, ghyp) for ε = −1.

Here is a table for the candidates of our Riemannian manifold S for the different choices of ε.
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ε −1 0 1

simply connected (H3, ghyp) (R3, geucl) (S 3, gstd)

T 3
= S 1 × S 1 × S 1

RP3

quotients S 1 × R2

... T 2 × R
...

...

infinitely many, essentially infinitely many,

not completely finitely many, all known

understood all known

some compact, some compact, all compact

some noncomp. but finite vol., some of infinite vol.

some of infinite volume

Conversely, any 3-manifold M of constant curvature ε is locally isometric to (H3, ghyp),

(R3, geucl), or (S 3, gstd). Thus every point p has a neighborhood isometric to a ball in one of

these three spaces. The group O(3) acts isometrically on the ball letting p fixed. The differen-

tials of the isometries act by the usual action of O(3) on TpM � R3 and can map any direction

to any other direction. Thus all 3-manifolds of constant curvature are locally isotropic.

Now set

M := I × S ,

for our spacetime, where I ⊂ R is an open interval. For the Lorentz metric we make the ansatz

g = −dt ⊗ dt + f (t)2 · gS

where t ∈ I and f : I → R is a positive smooth function. Such a metric is called a warped

product. Put differently: For ξ = α ∂
∂t
+ X, η = β ∂

∂t
+ Y ∈ T(t,p) M with X, Y ∈ TpS , we have

g(ξ, η) = −αβ + f (t)2 · gS (X, Y).

Definition 3.6. A Lorentz manifold of the form (M, g) = (I × S ,−dt ⊗ dt + f (t)2 · gS ) where

(S , gS ) is a 3-dimensional Riemannian manifold of constant sectional curvature will be called

a Robertson-Walker spacetime.

Example 3.7. For (S , gS ) = (R3, geukl), I = R and f = 1 we obtain the Minkowski space

(M, g) = (R4, gMink).
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3.1.1. Geodesics of the spacetime

Lemma 3.8. A curve s 7→ c(s) = (t(s), γ(s)) is a geodesic in M if and only if

(i)
d2t

ds2
+ f (t) ḟ (t)gS (γ′(s), γ′(s)) = 0 and

(ii)
∇S

ds
γ′(s) + 2

ḟ (t)

f (t)
· dt

ds
· γ′(s) = 0.

Proof. The condition of being a geodesic is local, so we can check the assertion in local coor-

dinates on S . The metric − 1
εr2−1

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin (θ)2 dϕ ⊗ dϕ is readily checked to

have constant sectional curvature ε. Since any two Riemannian manifolds of the same constant

sectional curvature are locally isometric, we can introduce local coordinates r, θ, ϕ around any

point of S such that gS = − 1
εr2−1

dr ⊗ dr + r2dθ ⊗ dθ + r2 sin (θ)2 dϕ ⊗ dϕ on that coordinate

neighborhood.

Straightforward computation yields for the Christoffel symbols of M with respect to the local

coordinates t, r, θ, ϕ:

Γ
t
rr = −

f (t) ḟ (t)

εr2 − 1
= f (t) ḟ (t)(gS )rr

Γ
t
θθ = r2 f (t) ḟ (t) = f (t) ḟ (t)(gS )θθ

Γ
t
ϕϕ = r2 f (t) sin (θ)2 ḟ (t) = f (t) ḟ (t)(gS )ϕϕ

while all other Γt
i j

vanish. This show ((i)).

Comparison of the Christoffel symbols of S and M shows that they coincide for all combinations

of spatial coordinates r, θ, ϕ. Moreover, Γr
tr = Γ

θ
tθ = Γ

ϕ
tϕ =

ḟ (t)
f (t)

and Γr
tt = Γ

θ
tt = Γ

ϕ
tt = 0. This

yields ((ii)). See the SageMath notebook Robertson-Walker.ipynb for the computations. �

Remark 3.9. Lemma 3.8 holds for all warped products of the form −dt⊗dt+ f (t)2gS whenever

(S , gS ) is a Riemannian manifold. The fact that our S is 3-dimensional and has constant sectional

curvature is actually irrelevant. See [7, Ch. 7, Prop. 38].

Example 3.10. The curve c(s) = (s, γ0), where γ0 ∈ S is constant, is a timelike geodesic. We

interpret it as the world line of a galaxy.
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Let now s 7→ c(s) = (t(s), γ(s)) be a null geodesic. Then

0 = g

(
dc

ds
,

dc

ds

)

= g

(
dt

ds

∂

∂t
+ γ′(s),

dt

ds

∂

∂t
+ γ′(s)

)

= −
(

dt

ds

)2

+ f 2 · gS (γ′(s), γ′(s)).

This implies

d

ds

(
f · dt

ds

)
= ḟ ·

(
dt

ds

)2

+ f · d2t

ds2

= ḟ · f 2 · gS (γ′, γ′) + f · d2t

ds2

(i)
= 0.

Hence f · dt
ds

is constant.

b

b

t1

t2

world line

of a photon

our world

line

world

line of a

distant

galaxy

∂
∂t

Figure 43.. Redshift in Robertson-

Walker spacetime

From the point of view of an observer with world line s 7→ (s, γ0), we get for the energy of a

photon

E = g

(
∂

∂t
,

dc

ds

)
= g

(
∂

∂t
,

dt

ds

∂

∂t
+ γ′(s)

)
= − dt

ds
= −const

f (t)

and therefore

E(t1)

E(t2)
=

f (t2)

f (t1)
.

Definition 3.11. The quantity

z :=
f (t2) − f (t1)

f (t1)
=

f (t2)

f (t1)
− 1

is called redshift (of the null geodesic).

Redshift can be observed and measured very precisely because chemical elements emit light at

specific energy levels (frequencies, colors). This light, emitted by other galaxies arrives with a

color shift which can be measured to high precision.

Taylor expansion of f in the variable t2 yields

f (t1) = f (t2) + ḟ (t2)(t1 − t2) + O(|t1 − t2|2)

= f (t2)
(
1 + H(t2)(t1 − t2) + O(|t1 − t2|2)

)
,
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where H(t) =
ḟ (t)
f (t)

. This implies

z =
1

1 + H(t2)(t1 − t2) + O(|t1 − t2|2)
− 1

= 1 − H(t2)(t1 − t2) + O(|t1 − t2|2) + O(|t1 − t2|2) − 1

= H(t2)(t2 − t1) + O(|t1 − t2|2).

Hence if we observe light from galaxies not too far away, such that the term O(|t1 − t2|2) is

negligible compared to the term H(t2)(t2 − t1), then the redshift is essentially proportional to the

time difference |t1− t2|, hence to the distance to the other galaxy. The constant H0 = H(t0) where

t0 stands for “now” is called the Hubble constant. In fact, one observes z > 0, so the Hubble

constant is positive. Therefore ḟ (now) is positive, i.e., the universe is currently expanding.

Lemma 3.12. The Ricci curvature of a Robertson-Walker spacetimes satisfies

ric

(
∂

∂t
,
∂

∂t

)
= −3

f̈

f
,

ric

(
∂

∂t
, X

)
= ric

(
X,

∂

∂t

)
= 0,

ric(X, Y) =

2

(
ḟ

f

)2

+ 2
ε

f 2
+

f̈

f

 g(X, Y),

where X and Y are tangent to S .

Proof. Use either explicit computation (see SageMath notebook Robertson-Walker.ipynb) or the

general formulas for warped products (see [7, Ch. 7, Cor. 43]). �

This implies

scal = 3
f̈

f
+ 3

2

(
ḟ

f

)2

+ 2
ε

f 2
+

f̈

f

 = 6



(
ḟ

f

)2

+
ε

f 2
+

f̈

f

 .

For the Einstein tensor we find

G

(
∂

∂t
,
∂

∂t

)
= 3



(
ḟ

f

)2

+
ε

f 2

 ,

G

(
∂

∂t
, X

)
= G

(
X,

∂

∂t

)
= 0, (1)

G(X, Y) = −


(
ḟ

f

)2

+
ε

f 2
+ 2

f̈

f

 g(X, Y).
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If the Einstein field equations (with Λ = 0) are satisfied then the momentum density in the

energy-stress tensor must vanish and the stress density must be isotropic. We get

8π

3
̺ =

(
ḟ

f

)2

+
ε

f 2
, (2)

−8πp =

(
ḟ

f

)2

+
ε

f 2
+ 2

f̈

f
, (3)

where ̺ is the energy density and p the pressure.

Subtracting (2) from (3) gives

3
f̈

f
= −4π(̺ + 3p). (4)

Differentiation of (2) and insertion of (4) and (2) yields

8π

3
˙̺ = 2 · ḟ

f
· f̈ f − ḟ 2

f 2
− 2 · ε ḟ

f 3

=

2
f̈

f
− 2


(

ḟ

f

)2

+
ε

f 2


 ·

ḟ

f

=

(
−8π

3
(̺ + 3p) − 16π

3
̺

)
· ḟ

f

= (−8π̺ − 8πp) · ḟ

f
,

hence

˙̺ = −3(̺ + p) · ḟ

f
. (5)

3.1.2. Singularities

Let the domain I = (t∗, t∗) of f be maximal in the sense that f cannot be extended beyond I as a

positive smooth function. Here −∞ ≤ t∗ < t∗ ≤ ∞.

Definition 3.13. (1) t∗ or t∗ is called a physical singularity, if ̺ → ∞ for t ց t∗ or t ր t∗,
respectively.

(2) t∗ is called a big bang, if f (t)→ 0 and ḟ (t)→ ∞ for t ց t∗.
(3) t∗ is called a big crunch or collapse, if f (t)→ 0 and ḟ (t)→ −∞ for t ր t∗.

Remark 3.14. If ̺ + 3p ≥ 0 and H0 = H(t0) > 0, then M has an initial singularity, i.e.,
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t∗ > −∞. To see this, notice that f is concave

because f̈ = − 4π
3

(̺ + 3p) f ≤ 0. From H(t0) > 0

we see ḟ (t0) > 0 and, by concavity, ḟ ≥ ḟ (t0) on

(t∗, t0]. This implies that for any t1 ∈ (t∗, t0],

f (t0) > f (t0)− f (t1) =

∫ t0

t1

ḟ (t) dt ≥ (t0−t1)· ḟ (t0)

and thus

t0 − t1 ≤
f (t0)

ḟ (t0)
=

1

H0
.

b

bc

f

t
t0

estimate for

the age of

the universe

Figure 44.. Initial singularity

If we let t1 tend to t∗ we obtain

t0 − t∗ ≤
1

H0
.

This way, we did not only show t∗ > −∞, but also derived an upper bound for the age of the

universe in terms of the Hubble constant. Remember that the Hubble constant can be quite well

determined experimentally via the observation of redshift. Current estimates for the age of the

universe give it a value of about 13.8 billion years.

Proposition 3.15. Suppose t∗ and t∗ are physical singularities if they are finite. Let H0 > 0,

̺ > 0 and suppose there are constants − 1
3
< a < A, such that a ≤ p

̺ ≤ A. Then

(1) The initial singularity t∗ is a big bang.

(2) If ε = 0 or ε = −1, then I = (t∗,∞) and f → ∞, ̺→ 0 for t → ∞.

(3) If ε = 1, then I = (t∗, t∗) and t∗ < ∞ is a big crunch.

Proof. Set δ := 3a + 1. Because of a > − 1
3

we have δ > 0 and

−1

3
+
δ

3
= a ≤ p

̺
=⇒ 3p + ̺ ≥ δ̺ > 0

(4)
=⇒ f̈ < 0(

with ḟ (t0) > 0
)
=⇒ ḟ > 0 on (t∗, t0].

Furthermore, we have on (t∗, t0]

˙̺
(5)
= −3(̺ + p)

ḟ

f
≥ −3(̺ + A̺)

ḟ

f
= −C · ̺ · ḟ

f
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with C := 3(1 + A) > 0. This implies

(ln ̺)̇ ≥ −C(ln f )̇ = (ln f −C )̇

=⇒ (ln(̺ f C))̇ ≥ 0

=⇒ (̺ f C )̇ ≥ 0

=⇒ ̺ · f C ≤ ̺(t0) f (t0)C on (t∗, t0]

=⇒ f → 0 for t → t∗

because ̺ր ∞ as t ց t∗. Moreover, we have

˙̺
(5)
= −3(̺ + p)

ḟ

f
≤ −(δ̺ + 2̺)

ḟ

f
= −(2 + δ)̺ · ḟ

f

and in a similar fashion to before we obtain

(̺ f 2+δ )̇ ≤ 0 =⇒ ̺ · f 2+δ

︸  ︷︷  ︸
=̺ f 2 · f δ

≥ ̺(t0) f (t0)2+δ on (t∗, t0].

With f → 0, we get f δ → 0 and thus ̺ f 2 → ∞ for t → t∗. With (2) we then get

∞← 8π

3
̺ f 2
= ḟ 2

+ ε =⇒ ḟ → ∞.

This shows (1).

Case 1: The function f has a maximum at tm ∈ I.

0 < ̺(tm)
(2)
=

3

8π

{
=0︷ ︸︸ ︷

ḟ (tm)2

f (tm)2
+

ε

f (tm)2

}
=⇒ ε > 0, which means ε = 1.

With f̈ < 0 this implies ḟ < 0 on (tm, t
∗). A discussion similar to the one before shows that t∗ is

a big crunch. This is the situation in (3).

Case 2: The function f does not have a maximum on I.

This implies ḟ > 0 on I because f̈ < 0. From ̺ > 0 and 3p + ̺ > 0 it follows that 3(p + ̺) > 0.

Hence

˙̺ = −3(̺ + p)
ḟ

f
< 0.

Thus I does not have an ending physical singularity, t∗ = ∞.

Subcase A: f → ∞ for t → ∞.

We have (̺ f 2+δ )̇ ≤ 0 so that ̺ f 2+δ is bounded on (t0,∞). With f → ∞, this implies ̺ f 2 → 0

for t → ∞. Now (2) implies

0← 8π

3
̺ f 2 (2)
= ḟ 2

+ ε =⇒ ε ≤ 0

i.e., ε = −1 or ε = 0. This is the situation in (2).
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Subcase B: f → b < ∞ for t →∞.

This implies ḟ → 0 for t → ∞.

=⇒ 8π

3
̺ f 2
= ḟ 2

+ ε
t→∞−→ ε =⇒ ε ≥ 0

which means ε = 0 or ε = 1.

Since ̺ f C is positive and increasing, we have ̺ f 2
9 0.

This implies ε , 0, i.e. ε = 1. This shows ̺ f 2 → 3
8π for

t → ∞.

On the other hand, by the mean value theorem, there is a

sequence ti ∈ (i, i − 1) with f̈ (ti) = ḟ (i + 1) − ḟ (i). Because

of ḟ → 0 we then get f̈ (ti)→ 0.

b

b

ḟ

t

i i + 1

Figure 45.. Decay of f̈This implies

3
f̈

f

(4)
= −4π(̺ + 3p) =⇒ ̺(ti) + 3p(ti)→ 0 for i→ ∞.

Now,

0← ̺(ti) + 3p(ti) ≥ δ̺(ti) =⇒ ̺(ti)→ 0 =⇒ ̺(ti) f (ti)
2 → 0.

This is a contradiction, so Subcase B does not occur. �

Remark 3.16. In the literature, the case ε ≤ 0 is often called open case as opposed to the closed

case ε > 0, because if S is simply connected and complete then S is noncompact for ε ≤ 0

(S = R3 or S = H3) and S is compact for ε > 0 (S = S 3). Indeed, S is always compact when

ε = 1. However, when ε = 0 or ε = −1, the manifold S can be compact as well, for example for

ε = 0 we could have S = T 3. Therefore this terminology is somewhat misleading.

Definition 3.17. The constant ̺c :=
3H0

2

8π
is called the critical energy density.

The reason for this terminology is given by

Proposition 3.18. We have

̺(t0) < ̺c ⇐⇒ ε = −1

̺(t0) = ̺c ⇐⇒ ε = 0

̺(t0) > ̺c ⇐⇒ ε = 1
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Proof. From the equation (2) we find

̺(t0) − ̺c =
3

8π

{
H0

2
+

ε

f (t0)2
− H0

2

}
=

3

8π
· ε

f (t0)2
.

Thus the sign of ε is the same as that of ̺(t0) − ̺c. �

Definition 3.19. A dust cosmos is a Robertson-Walker spacetime with p = 0. A dust cosmos

with H0 > 0 is called Friedmann cosmos.

Proposition 3.20. For a Robertson-Walker spacetime M

with nonconstant f , the following statements are equivalent.

(i) M is a dust cosmos.

(ii) ̺ · f 3
=: m is constant.

(iii) The Friedmann equation

ḟ 2
+ ε =

A

f

holds with the constant A = 8π
3

m > 0.
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Figure 46.. Alexander A.

Friedmann (1888–1925)

Proof. “(ii)⇔ (iii)” is clear because by (2) we have

8π
3
̺ f 3

f
= ḟ 2

+ ε.

“(i)⇒(ii)”: If p = 0 equation (5) yields ˙̺ = −3̺
ḟ

f
which implies (ln ̺)̇ + 3(ln f )̇ = 0. Hence

(ln ̺ f 3 )̇ = 0 and thus (̺ f 3 )̇ = 0.

“(ii)⇒(i)” On the one hand, (̺ f 3 )̇ = 0 implies

˙̺ = −3̺
ḟ

f
.

On the other hand, we have by (5)

˙̺ = −(3̺ + p)
ḟ

f
.

Therefore

p · ḟ = 0.

https://en.wikipedia.org/wiki/Alexander_Friedmann
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Now set J := {t ∈ I | p(t) , 0}. We have to show J = ∅. Suppose J , ∅ and let J0 be a nonempty

connected component of J. Then J0 is an open interval. It follows that ḟ ≡ 0 on J0, hence

f ≡ a > 0 on J0. By (3) this means

−8πp ≡ ε

a2
, 0 on J0.

Since p is continuous,

p ≡ − ε

8πa2
, 0 on J0

where J0 is the closure of J0 in I. This implies J0 ⊂ J, i.e., J0 = J0. Thus J0 = I. Hence f is

constant, in contradiction to the assumption. �

We now determine the solutions of the Friedmann equation. Without loss of generality, let t∗ = 0.

(1) ε = 0: f (t) = (3
2
)

2
3 A

1
3 t

2
3 (semicubical parabola).

(2) ε = −1: The function [0,∞) → [0,∞), T 7→
A
2

(sinh(T ) − T ) is strictly increasing. Hence for any

t ≥ 0 we can uniquely solve t = A
2

(sinh(T ) − T ) for

T . Putting f = A
2

(cosh(T ) − 1) we check

ḟ 2
+ ε =

(
sinh(T )

cosh(T ) − 1

)2

− 1 =
2

cosh(T ) − 1
=

A

f
.

(3) ε = 1: Similar reasoning as above yields

t = A
2

(T − sin(T )) and f = A
2

(1 − cos(T )).

This describes a cycloid.

ε = 1

ε = 0

ε = −1

t

f

Figure 47.. Solutions to the Friedmann

equation

Definition 3.21. A Robertson-Walker spacetime is called a radiation cosmos, if

p =
̺

3
.
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In Exercise 3.5 it will be shown that

(1) ̺ · f 4
=: A is constant.

(2) We have f (t)2
= −ε(t − t∗)2

+ 4

√
2π
3

A · (t − t∗).

ε = 1

ε = 0

ε = −1

t

f (t)

Figure 48.. Radiation cosmos

Remark 3.22. The existence of big bang singularities is not that much dependent on the partic-

ular ansatz used here but can be derived in great generality. This is the content of Hawking’s

singularity theorem, see e.g. [7, Ch. 14].

3.1.3. Horizons

Let M = I×S be a Robertson-Walker spacetime with distortion function f . Let γ : [s0,∞)→ M,

γ(s) = (γ0(s)︸︷︷︸
∈I

, γ̂(s)︸︷︷︸
∈S

)

a future-directed null curve such as the world line of a photon. Then

0 = −((γ0)′)2
+ f (γ0)2 ·

∣∣∣
∣∣∣γ̂′

∣∣∣
∣∣∣
S

2
=⇒

∣∣∣
∣∣∣γ̂′

∣∣∣
∣∣∣
S
=

(γ0)′

f (γ0)
.

For the length of γ̂ we have
∫ ∞

s0

∣∣∣
∣∣∣γ̂′(s)

∣∣∣
∣∣∣
S

ds =

∫ ∞

s0

(γ0)′(s)

f (γ0(s))
ds =

∫ ∞

γ0(s0)

dγ0

f (γ0)
.

If f growth fast enough, for example f (t) = t2 or f (t) = et we find

R :=

∫ ∞

s0

∣∣∣
∣∣∣γ̂′(s)

∣∣∣
∣∣∣
S

ds < ∞. (6)

This shows that photons starting at a point p cannot leave the ball around p of radius R in S .

This means that parts of the universe cannot be observed. This is known as the horizon problem.

3.2. Cosmological inflation

We consider a Robertson Walker spacetime M = I × S , where I ⊂ R is an interval, (S , gS ) is a

Riemannian manifold of dimension 3 and M is equipped with the metric

g = −dt2
+ f (t)2gS , where f : I → R

is positive and smooth. Our aim is to find spacetimes of this form which provide a better expla-

nation of some astronomical observations than the models considered in the previous section.
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b rs

M

S
p

BR(p)

γworld line
of p

Figure 49.. Horizon problem

3.2.1. Two problems with Friedmann spacetimes

We describe two observational facts which can be better explained if the cosmic expansion

function f grows exponentially during a period shortly after the big bang. As a first example

we mention that the energy density ρ and the critical energy density ρc of our universe can be

estimated using observations by astronomers. They find that | ρρc
− 1| ≤ 0.04 at the present time.

In order to estimate this quantity at times shortly after the big bang we compute, using (2),

ρ

ρc

− 1 =
H2
+ ε f −2

H2
− 1 =

ε

f 2H2
=

ε

ḟ 2
where H =

ḟ

f
.

Since t = 0 is a big bang singularity we have ḟ (t)ր∞ as t ց 0. Thus

ρ

ρc

− 1 =
ε

ḟ 2
→ 0, as t ց 0.

This means that shortly after the big bang ρ was even closer to ρc than it is today. In other words:

By this model, our universe can have evolved into its present state only if a very special initial

condition was satisfied. This is not very likely to happen in nature unless there is a reason for

it. Therefore we ask: Why should ρ and ρc be so close to each other? We note that this can be

explained by an exponential expansion of the universe shortly after the big bang. Indeed if there

is an interval I′ ⊂ I such that for all t ∈ I′ we have f (t) = a exp(λt) for some a, λ > 0 then we

get on I′:
ρ

ρc

− 1 =
ε

a2λ2 exp(2λt)
.

This function decays exponentially and thus at the end of I′ the quantity
ρ
ρc
− 1 is very small

even if it was large at the beginning.

As a second problem, we mention that the theory of inflation can also explain better why the

cosmic microwave background radiation is almost the same in all directions. We noted in Sec-

tion 3.1.3 that a photon which is emitted at t = t0 and received at t = t1 can cover distance in S

at most

r =

∫ t1

t0

dt

f (t)
.
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In the following we take t1 to be our time, i.e. 13.7×109 years after the big bang and we let t0 be

the time when the cosmic microwave background radiation which we observe was emitted, i.e.

3.8 × 105 years after the big bang. Earth is a point E ∈ S and we define the 2-sphere of radius r

around E in S by

S 2(E, r) := {x ∈ S | distS (x, E) < r}.

It is a remarkable fact that the cosmic microwave background radiation which we observe is

distributed very uniformly in all directions. How can we explain this fact?

First we note that under the assumption that f grows polynomially it is very hard to give a

physical reason. In order to see this, recall that the solution of the Friedmann equation for ε = 0

is given by f (t) = a · t2/3 where a is positive constant. The solutions for ε = ±1 still satisfy

f (t) ∼ a · t2/3 as t ց 0 because t ∼ A
12

T 3 and f ∼ A
4

T 2. So consider f (t) = a · t2/3. Then the

distance in S traced out by the photon between time t0 and t1 is bounded by

∫ t1

t0

dt

at2/3
=

3
a
(t1/3

1
− t

1/3
0

) =: r(t0, t1).

The photons of the cosmic microwave background radiation which we observe were emitted

from S 2(E, r(t0, t1)). Now note that

r(t0, t1)

r(0, t0)
=

t
1/3
1
− t

1/3
0

t
1/3
0

=

( t1

t0

)1/3
− 1 ≈ 16.

Thus there are configurations consisting of many points in S 2(E, r(t0, t1)) with mutual distance

larger than r(0, t0), see also Exercises 3.7 and 3.8. Two points in B(E, r(t0, t1)) with distance

larger than r(0, t0) cannot have influenced each other during the time interval (0, t0). So why is

the cosmic microwave background radiation so uniform on S 2(E, r(t0, t1))?

On the other hand, if f grows exponentially, f (t) = a exp(λt) for t ≥ t′, then

∫ t

t′

dτ

a exp(λτ)
=

1
aλ (exp(−λt′) − exp(−λt)) =: r̃(t′, t)

is bounded as t → ∞. Therefore in this case one can expect a more uniform distribution of

radiation.

3.2.2. A simple inflationary model

We now describe a simple inflationary model which leads to a period of exponential expansion

of the universe. We consider an unknown scalar field ϕ: M → R on M, the so called inflaton

field and we use the Lagrangian density

Linfl(ϕ, g) := −(〈dϕ, dϕ〉g + 2V(ϕ))dvolg

where V: R→ R is a given potential. In order to obtain an equation for ϕ we use the Lagrangian

principle, i.e. we demand that ϕ is critical for Linfl(ϕ, g). More precisely, for all compact subsets
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K ⊂ M and for all smooth 1-parameter families ϕs = ϕ + sv, v ∈ C∞c (M), supp(v) ⊂ K, we

require
d

ds

∣∣∣∣
s=0

∫

K

Linfl(ϕs, g) = 0.

We get

0 = − d

ds

∣∣∣∣
s=0

∫

K

(〈dϕ + sdv, dϕ + sdv〉g + 2V(ϕ + sv))dvolg

= −2

∫

K

(〈dϕ, dv〉g + V ′(ϕ)v)dvolg

= −2

∫

K

(�ϕ + V ′(ϕ))v dvolg,

where � := −div ◦ grad is the d’Alembert operator. Since this needs to hold for all v the inflaton

field must solve a wave equation:

�ϕ + V ′(ϕ) = 0. (7)

In order to determine the energy-momentum tensor Tinfl of the inflaton we use again the La-

grangian principle: For all compact subsets K ⊂ M and for all smooth 1-parameter families

gs = g + sh, supp(h) ⊂ K, we require

d

ds

∣∣∣∣
s=0

∫

K

Linfl(ϕ, gs) =

∫

K

〈8πTinfl, h〉 dvolg.

Using that
d

ds

∣∣∣∣
s=0

dvolgs
=

1
2
〈g, h〉 dvolg

and that

d

ds

∣∣∣∣
s=0
〈dϕ, dϕ〉 = d

ds

∣∣∣∣
s=0

g
i j
s ∂iϕ∂ jϕ = −gikg jℓhkℓ∂iϕ∂ jϕ = − 〈dϕ ⊗ dϕ, h〉g

we obtain
∫

K

〈8πTinfl, h〉g dvolg = −
∫

K

(〈dϕ, dϕ〉g + 2V(ϕ))1
2
〈g, h〉 dvolg +

∫

K

〈dϕ ⊗ dϕ, h〉g dvolg

=

∫

K

〈
dϕ ⊗ dϕ −

(
1
2
〈dϕ, dϕ〉g + V(ϕ)

)
g, h

〉
dvolg

and thus

8πTinfl = dϕ ⊗ dϕ − (1
2
〈dϕ, dϕ〉 + V(ϕ)

)
g.

We write down the Einstein field equations G = 8πTinfl using the results (1) for the Einstein

tensor of g:

3
(
H2
+
ε

f 2

)
= G(∂t, ∂t) = 8πTinfl(∂t, ∂t) = ϕ̇

2
+

1
2
〈dϕ, dϕ〉 + V(ϕ),

0 = G(∂t, X) = 8πTinfl(∂t, X) = ϕ̇∂Xϕ
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and with X ∈ TS , g(X, X) = 1, we get

−
(
H2
+
ε

f 2
+ 2

f̈

f

)
= G(X, X) = 8πTinfl(X, X) = (∂Xϕ)2 −

(
1
2
〈dϕ, dϕ〉 + V(ϕ)

)
.

By spatial homogeneity we assume that ∂Xϕ = 0 for all X ∈ TS . Then we have dϕ = ϕ̇dt and

thus the Einstein field equations read

3
(
H2
+
ε

f 2

)
= ϕ̇2

+
1
2
(−ϕ̇2) + V(ϕ) = 1

2
ϕ̇2
+ V(ϕ),

−
(
H2
+
ε

f 2
+ 2

f̈

f

)
=

1
2
ϕ̇2 − V(ϕ)

We calculate

Ḣ =
f̈ f − ḟ 2

f 2
=

f̈

f
− H2

and thus the Einstein field equations read

3H2
+ 3

ε

f 2
=

1
2
ϕ̇2
+ V(ϕ),

1
2
ϕ̇2 − V(ϕ) = −

(
H2
+
ε

f 2
+ 2(Ḣ + H2)

)
= −

(
2Ḣ +

ε

f 2
+ 3H2

)
.

By adding and subtracting these two equations we get

Ḣ + 2
ε

f 2
+ 3H2

= V(ϕ) (8)

Ḣ − ε

f 2
= − 1

2
ϕ̇2. (9)

Since we have ∂Xϕ = 0 for all X ∈ TS the wave equation (7) for ϕ reads

ϕ̈ + 3Hϕ̇ + V ′(ϕ) = 0. (10)

From now we assume that ε = 0 for simplicity. Then the Einstein field equations read

Ḣ + 3H2
= V(ϕ) (11)

Ḣ = − 1
2
ϕ̇2. (12)

In particular we have Ḣ ≤ 0, i.e. H is monotonically decreasing.

Example 3.23. The simplest example for the inflaton potential is clearly V ≡ 0. The general

solution to the equation Ḣ + 3H2
= 0 is given by

H(t) =



1
3t+a

, if H(0) = 1
a
,

0, if H(0) = 0,
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Figure 50.. Hubble constant for V = 0
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Figure 51.. Expansion factor and inflaton for V = 0

where a , 0.

Since we are looking for a solution with a big bang, we require H(t) → ∞ as t ց 0 and thus

we take H(t) = 1
3t

. Since we have H(t) = d
dt

ln( f (t)) we get f (t) = c1t1/3 with c1 ∈ R. In

particular we have ḟ (t) = c1

3
t−2/3 → ∞ as t ց 0 and thus we have found a solution with a big

bang singularity. We also have ϕ̇2
= −2Ḣ = 2

3t2
and thus ϕ(t) = ±

√
2
3

ln(t) + c2 with c2 ∈ R.

Example 3.24. Now consider V ≡ v0 > 0. The general solution to the equation Ḣ + 3H2
= v0
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for H(0) > 0 is given by

H(t) =



√
v0

3
coth(

√
3v0(t + a)), if H(0) =

√
v0

3
coth(

√
3v0a) >

√
v0

3
,

√
v0

3
, if H(0) =

√
v0

3
,

√
v0

3
tanh(

√
3v0(t + a)), if H(0) =

√
v0

3
tanh(

√
3v0a) <

√
v0

3
.

where a ∈ R. Since we are looking for a solution with a big bang, we require H(t) → ∞ as

t ց 0, and thus we take H(t) =
√

v0

3
coth(

√
3v0t).

0.0 0.5 1.0 1.5

0.4

0.6

0.8

1.0
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1.4

H(t) =
√

v0
3
coth(

√
3v0 t)

Figure 52.. Hubble constant for V = v0

In order to find f we compute

− d

dt

1

6
ln

( 3

v0
H2 − 1

)
= −1

6

3v−1
0
· 2HḢ

3v−1
0

H2 − 1
= −1

6

6H(v0 − 3H2)

3H2 − v0

= H =
d

dt
ln f

and thus

f (t) = c1

( 3

v0
H2 − 1

)−1/6
= c1

(
coth2 ( √

3v0t
) − 1

)−1/6
= c1

(
sinh

( √
3v0t

))1/3
,

where c1 > 0. In particular as t ց 0 we get f (t)ց 0 and

ḟ (t) =
c1

3

(
sinh

( √
3v0t

))−2/3 √
3v0 cosh

( √
3v0t

)

= c1

√
v0

3

(
sinh

( √
3v0t

))−2/3
cosh

( √
3v0t

)→∞.

Hence we again found a solution with a big bang singularity. Note that in this example the

function f is exponentially growing as t → ∞. We also have

ϕ̇2
= −2Ḣ = −2(v0 − 3H2) = −2

(
v0 − v0 coth2 ( √

3v0t
))
=

2v0

sinh2(
√

3v0t)
.
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Thus we get

ϕ(t) = ±
√

2
3

ln
(

tanh
( √3v0

2
t
))
+ c2

with c2 ∈ R.

0.5 1.0 1.5 2.0 2.5
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1
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f(t)
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Figure 53.. Expansion factor and inflaton for V = v0

In order to estimate solutions to the field equations (11), (12) we will use the following compar-

ison lemma.

Lemma 3.25. Let I ⊂ R be an open interval, let h0, h1: I → R be C1 functions such that

ḣ0 + 3h2
0
≤ ḣ1 + 3h2

1
and let t0 ∈ I.

(1) If h0(t0) ≤ h1(t0) then we have h0(t) ≤ h1(t) for all t ∈ I, t ≥ t0.

(2) If h0(t0) ≥ h1(t0) then we have h0(t) ≥ h1(t) for all t ∈ I, t ≤ t0.

Proof. We define F: I → R by

F(t) := (h1(t) − h0(t)) exp
(
3

∫ t

t0

(h1(τ) + h0(τ))dτ
)
.

We compute

Ḟ(t) = (ḣ1(t) − ḣ0(t)) exp
(
3

∫ t

t0

(h1(τ) + h0(τ))dτ
)

+ (h1(t) − h0(t))3(h1(t) + h0(t)) exp
(
3

∫ t

t0

(h1(τ) + h0(τ))dτ
)

= (ḣ1(t) − ḣ0(t) + 3h1(t)2 − 3h0(t)2) exp
(
3

∫ t

t0

(h1(τ) + h0(τ))dτ
)
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≥ 0.

Hence the function F is monotonically increasing. If h0(t0) ≤ h1(t0) then F(t0) ≥ 0 and thus for

all t ≥ t0 we have F(t) ≥ 0 i.e. h1(t) ≥ h0(t). This shows the first assertion and the second one

follows in the same way. �

Next we construct a potential V and functions H, ϕ satisfying the Einstein field equations (11),

(12) such that there exist t0, t1 with 0 < t0 < t1 such that f grows exponentially in (0, t0) and f

grows polynomially in (t1,∞).

Example 3.26. Let v0, ϕ0 > 0. We define the following constants

t0 := 2√
3v0

artanh
(

exp
(
−

√
3
2
ϕ0

))
,

c1 :=

√
3
v0

tanh
( √

3v0t0
) − 3t0,

c2 :=

√
v0

sinh(
√

3v0t0)
,

t1 := 1
3

(√
6

c2
2
+2v0
− c1

)
,

ϕ1 := ϕ0 − c2(t1 − t0) < ϕ0.

Now let V: R → R be such that 0 ≤ V ≤ v0 everywhere, V(ϕ) = v0 for all ϕ ≥ ϕ0 and V(ϕ) = 0

for all ϕ ≤ ϕ1.

b b

b

ϕ1 ϕ0 ϕ

v0

V(ϕ)

Figure 54.. Inflationary potential

From Example 3.24 we know that for t close to 0 the functions

H(t) =

√
v0

3
coth

( √
3v0t

)
, ϕ(t) = −

√
2
3

ln
(

tanh
( √

3v0

2
t
))

solve the equations (11), (12) provided that

ϕ(t) ≥ ϕ0, i.e. t ≤ 2√
3v0

artanh
(

exp
(
−

√
3
2
ϕ0

))
= t0.

Thus on [0, t0] the function f coincides with the one in Example 3.24 and grows exponentially.
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In particular, we have ϕ(t0) = ϕ0. Using Lemma 3.25 with h0 = H, h1 =

√
v0

3
coth(

√
3v0t),

V ≤ v0, we conclude that for all t we have H(t) ≤
√

v0

3
coth(

√
3v0t). Using Lemma 3.25 with

h0 =
1

3t+c1
, h1 = H, V ≥ 0, we conclude that for t ≥ t0 we have

H(t) ≥ 1

3t + c1
. (13)

Here we have chosen c1 such that

H(t0) =
1

3t + c1
, i.e. c1 =

√
3
v0

tanh
( √

3v0t0
) − 3t0.

By (13) and (11) we have for all t ≥ t0

3

(3t + c1)2
≤ 3H(t)2

=
1
2
ϕ̇(t)2

+ V(ϕ(t)) ≤ 1
2
ϕ̇(t)2

+ v0

and thus

ϕ̇(t)2 ≥ 6

(3t + c1)2
− 2v0. (14)

In particular, we have

ϕ̇(t0)2 ≥ 6

(3t0 + c1)2
− 2v0 = 6 · v0

3
coth2 ( √

3v0t0
) − 2v0 =

2v0

sinh2(
√

3v0t0)
= 2c2

2.

By continuity of ϕ̇, there exists t1 > t0 such that for all t ∈ [t0, t1] we have

ϕ̇(t)2 ≥ c2
2.

By (14) and since the map t 7→ 6
(3t+c1)2 − 2v0 is monotonically decreasing, we can find a possible

t1 with this property by requiring

6

(3t1 + c1)2
− 2v0 = c2

2, i.e. t1 =
1
3

(√
6

c2
2
+2v0
− c1

)
.

Therefore we have |ϕ̇| ≥ c2 on [t0, t1] and since ϕ̇(t0) < 0 we have ϕ̇ < −c2 on [t0, t1]. It follows

that

ϕ(t1) = ϕ(t0) +

∫ t1

t0

ϕ̇(τ)dτ ≤ ϕ0 − c2(t1 − t0) = ϕ1

and thus V(ϕ(t1)) = 0. For all t ≥ t1 the functions

H(t) =
1

3t + c3
, ϕ(t) = −

√
2
3

ln
(
t +

c3

3

)
+ c4

solve the equations (11), (12) by Example 3.23 where c3, c4 are determined by

H(t1) =
1

3t1 + c3
, ϕ(t1) = −

√
2
3

ln
(
t1 +

c3

3

)
+ c4.

Namely since V(ϕ(t1)) = 0 and ϕ is monotonically decreasing we have V(ϕ(t)) = 0 for all t ≥ t1.

The function f coincides with the one in Example 3.23 up to a time shift.
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3.3. Exercises

3.1. Show that deSitter spacetime S 4
1
(1) is a Robertson-Walker spacetime. What are S , gS , f

and ε in this case?

3.2. Let (M, g) be a Robertson-Walker spacetime which is a vacuum solution with trivial cos-

mological constant Λ = 0.

(a) Show that (M, g) is flat, i.e., the whole curvature tensor vanishes.

(b) Give an example with ε = −1.

3.3. Determine the solutions of the Friedmann equation for general ε, i.e. without normalizing

to ε ∈ {−1, 0, 1}.

3.4. We scale the Friedmann cosmos such that the coordinate t gives the age of the universe in

years. For this we have to give up the normalization ε ∈ {−1, 0, 1}.
(a) Today (t = 13.700.000.000) the energy density ρ coincides with the critical energy density

ρc up to an error of 4 percent. Deduce an upper bound on |ε| from this.

(b) What was the error 380.000 years after big bang?

3.5. Show that for any radiation cosmos the following holds:
(a) ̺ · f 4

=: A is constant.

(b) We have f (t)2
= −ε(t − t∗)2

+ 4

√
2π
3

A · (t − t∗).

3.6. Let γ1(s) = (s, p1) and γ2(s) = (s, p2) be the world lines of two galaxies in a Robertson-

Walker spacetime with warping function f (t) = et. Show that the galaxies move away from

one another with more than the speed of light. Why does this not lead to causality problems as

tachyons do in special relativity?

3.7. Let 0 < r < R. We put S 2(R) := {x ∈ R3 | ‖x‖ = R}. Let α(r,R) be the maximal number of

points on S 2(R) which have pairwise Euclidean distance r at least. The exercise aims at a proof

of the estimate

3

4

R2

r2
+

1

4
≤ α(r,R) ≤ 24

R2

r2
+ 2.

(a) Prove the upper bound.

Hint: Check that the Euclidean balls of radius r
2

about these points are pairwise disjoint. There-

fore the sum of their volumes is not larger than the volume of the r
2
-neighborhood of S 2(R).

(b) Show that for a maximal system of points as above, the balls radius 2r cover the r-

neighborhood of S 2(R).

(c) Use this to derive the lower bound.

3.8. We consider the spacetime M = (0,∞) × R3 with g = −dt2
+ f (t)2geukl. Use the results

of Exercise 3.7 to derive an estimate on the number of causally independent directions (at time
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t = 380.000), from which we can observe the cosmic background microwave radiation today

(t = 13.700.000.000) where

(a) f (t) = a · t2/3,

(b) f (t) = exp(t).

3.9. (a) Show that in the inflation model the wave equation (10) for the inflaton field ϕ follows

from the Einstein field equations (8) and (9) provided ϕ̇ , 0.

(b) Show that if ε ≥ 0 and V < 0 in the inflation model, then each solution satisfies ϕ̇(t) , 0 for

all t.



4. Black holes

In order to find relativistic planetary orbits analogous to Kepler’s orbits we need to find

Lorentzian manifolds modeling the spacetime outside a gravitating object. The simplest one

is the Schwarzschild spacetime which turns out to be a good model for a static, non-rotating

radially symmetric astronomical object. It comes with one parameter which corresponds to

the mass of the gravitating object. The model predicts interesting phenomena not observed in

Newtonian gravitation, namely the existence of a horizon. Once something crosses the horizon

towards the central mass, it can never return, not even light. This leads to the terminology of a

black hole.

If one wants to allow rotating central masses one has to generalize the Schwarzschild model

and allow for a second parameter encoding the rotation speed. This is then known as the Kerr

solution. All these solutions model spacetime away from the central mass and are therefore

vacuum solutions, i.e. they are Ricci-flat.

4.1. The Schwarzschild solution

In order to find a model for a vacuum spacetime outside a

static, radially symmetric astronomical object, we make the

following ansatz:

Set M := R × J × S 2, where J ⊂ R, and for t ∈ R, r̃ ∈ J set

g := −F(r̃)2dt ⊗ dt + H(r̃)2dr̃ ⊗ dr̃ +G(r̃)2gS 2

with positive smooth functions F,G,H : J → R. Here t is

the parameter in the first R-factor and r̃ ∈ J. The R-factor is

to be thought of as the time direction and J × S 2 generalizes

3-dimensional Euclidean space in polar coordinates. Since the

metric is supposed to be radially symmetric, the functions F,

G, and H are independent of the variables parametrizing S 2

and since it is static they are also independent of t.
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Figure 55.. Karl Schwarz-

schild (1873–1916)

Without loss of generality, we assume H ≡ 1 because otherwise we may substitute ˜̃r = h(r̃) with

h′ = H.

https://en.wikipedia.org/wiki/Karl_Schwarzschild
https://en.wikipedia.org/wiki/Karl_Schwarzschild
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After introducing polar coordinates ϕ, ϑ on S 2 its metric

takes the form

gS 2 = sin2 ϑdϕ ⊗ dϕ + dϑ ⊗ dϑ.

Hence

g = −F(r̃)2dt ⊗ dt + dr̃ ⊗ dr̃

+G(r̃)2(sin2 ϑdϕ ⊗ dϕ + dϑ ⊗ dϑ).

b

S 2

∂
∂ϕ

∂
∂ϑ

Figure 56.. Polar coordinates on S 2

The mapping (t, r̃, ϕ, ϑ) 7→ (2t0 − t, r̃, ϕ, ϑ) is an isometry. This implies that the fixed point set

{t0} × J × S 2
=: N1(t0) is a totally geodesic hypersurface. Its unit normal field is given by

ν1 =
1

F(r̃)

∂

∂t
.

Since N1(t0) is totally geodesic, we have ∇ξν1 = 0 for all ξ tangent to N1(t0) and thus

∇ ∂
∂r̃

∂

∂t
= ∇ ∂

∂r̃
((F(r̃)ν1) = F′(r̃)

1

F(r̃)

∂

∂t
+ 0 =

F′(r̃)

F(r̃)

∂

∂t
,

∇ ∂
∂ϕ

∂

∂t
= ∇ ∂

∂ϕ

∂

∂t
= 0.

The mapping (t, r̃, ϕ, ϑ) 7→ (t, r̃, 2ϕ0 − ϕ, ϑ) is an isometry as well, so once again, its fixed point

set R× J × {σ ∈ S 2|ϕ(σ) = ϕ0} =: N2(ϕ0) is a totally geodesic hypersurface. In this case, its unit

normal field is given by

ν2 =
1

G(r̃) sin(ϑ)

∂

∂ϕ
.

Once again, for all ξ tangent to N2(ϕ0), we have ∇ξν2 = 0 and

∇ ∂
∂r̃

∂

∂ϕ
=

G′(r̃)

G(r̃)

∂

∂ϕ
,

∇ ∂
∂ϑ

∂

∂ϕ
= cot(ϑ)

∂

∂ϕ
.

For the covariant derivative of ∂
∂ϕ in direction ∂

∂ϕ , therefore we get
〈
∇ ∂

∂ϕ

∂

∂ϕ
,
∂

∂ϕ

〉
=

1
2

∂

∂ϕ

〈
∂

∂ϕ
,
∂

∂ϕ

〉

︸     ︷︷     ︸
=G(r̃)2 sin(ϑ)2

= 0,

〈
∇ ∂

∂ϕ

∂

∂ϕ
,
∂

∂t

〉
=

∂

∂ϕ

〈
∂

∂ϕ
,
∂

∂t

〉

︸    ︷︷    ︸
=0

−
〈
∂

∂ϕ
,∇ ∂

∂ϕ

∂

∂t︸︷︷︸
=0

〉
= 0,

〈
∇ ∂

∂ϕ

∂

∂ϕ
,
∂

∂r̃

〉
= −

〈
∂

∂ϕ
,∇ ∂

∂ϕ

∂

∂r̃

〉
= −

〈
∂

∂ϕ
,

G′

G

∂

∂ϕ

〉
= −G′G sin(ϑ)2,

〈
∇ ∂

∂ϕ

∂

∂ϕ
,
∂

∂ϑ

〉
= −

〈
∂

∂ϕ
,∇ ∂

∂ϕ

∂

∂ϑ

〉
= − cot(ϑ)

〈
∂

∂ϕ
,
∂

∂ϕ

〉
:= − sin(ϑ) cos(ϑ)G2.
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This shows

∇ ∂
∂ϕ

∂

∂ϕ
= −G′G sin(ϑ)2 ∂

∂r̃
− sin(ϑ) cos(ϑ)

∂

∂ϑ
.

The other covariant derivatives of the coordinate fields can be derived in a similar fashion. Col-

lecting all derivatives we have

∇ ∂
∂r̃

∂

∂t
= ∇ ∂

∂t

∂

∂r̃
=

F′

F

∂

∂t
,

∇ ∂
∂ϕ

∂

∂t
= ∇ ∂

∂t

∂

∂ϕ
= 0,

∇ ∂
∂ϑ

∂

∂t
= ∇ ∂

∂t

∂

∂ϑ
= 0,

∇ ∂
∂r̃

∂

∂ϕ
= ∇ ∂

∂ϕ

∂

∂r̃
=

G′

G

∂

∂ϕ
,

∇ ∂
∂ϑ

∂

∂ϕ
= ∇ ∂

∂ϕ

∂

∂ϑ
= cot(ϑ)

∂

∂ϕ
,

∇ ∂
∂ϑ

∂

∂ϑ
= −G′G

∂

∂r̃
,

∇ ∂
∂ϕ

∂

∂ϕ
= − sin(ϑ)2G′G

∂

∂r̃
− sin(ϑ) cos(ϑ)

∂

∂ϑ
,

∇ ∂
∂r̃

∂

∂r̃
= 0,

∇ ∂
∂t

∂

∂t
= F′F

∂

∂r̃
.

Since we are looking for a vacuum solution we equate the Ricci curvature to 0 and get

0
!
= ric

(
∂

∂t
,
∂

∂t

)
= F

(
F′′ + 2F′

G′

G

)
, (1)

0
!
= ric

(
∂

∂r̃
,
∂

∂r̃

)
= −

(
F′′

F
+ 2

G′′

G

)
, (2)

0
!
= ric

(
∂

∂ϕ
,
∂

∂ϕ

)
= − sin2 ϑ

(
F′

F
GG′ +GG′′ − 1 + (G′)2

)
, (3)

0
!
= ric

(
∂

∂ϑ
,
∂

∂ϑ

)
= −

(
F′

F
GG′ +GG′′ − 1 + (G′)2

)
. (4)

Multiplying (2) with −F2G and (1) with −G and adding the two resulting equations yields

0 = FGF′′ + 2F2G′′ − FGF′′ − 2F′G′F = 2F(FG′′ − F′G′)

and hence (
G′

F

)′
=

G′′F −G′F′

F2
= 0.

This means that G′

F
=: a is constant and non-zero, for otherwise G′ ≡ 0 and also G′′ = 0,

a contradiction to (4). It follows that G is strictly monotonic and we can make the parameter
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transformation

r := G(r̃).

Then dr
dr̃
= G′ and hence dr = G′dr̃. Abbreviating dx2 := dx ⊗ dx we get

dr2
= (G′)2dr̃2

= a2F2dr̃2.

After this parameter substitution the metric takes the form

g = −F(r)2dt2
+

1

a2F(r)2
dr2
+ r2(sin(ϑ)2dϕ2

+ dϑ2)

= −F(r)2dt2
+

1

a2F(r)2
dr2
+ r2gS 2

with a new function F, yet to be determined.

We make the following physical assumption: Far from our astronomical object, the spacetime

should look approximately like Minkowski space

gMink = −dt2
+ dr2

+ r2gS 2 ,

reflecting the fact that far away from the central mass special relativity is a reasonable approx-

imation. More precisely, this means lim
r→∞

F(r) = 1 and a2
= 1. Hence the metric must have the

form

g = −F(r)2dt2
+

1

F(r)2
dr2
+ r2(sin(ϑ)2dϕ2

+ dϑ2).

For the Ricci curvature we now obtain

0 = ric

(
∂

∂t
,
∂

∂t

)
= F2

(
(F′)2

+ FF′′ + 2
FF′

r

)
, (5)

0 = ric

(
∂

∂r̃
,
∂

∂r̃

)
= −


(

F′

F

)2

+
F′′

F
+ 2

F′

rF

 ,

0 = ric

(
∂

∂ϕ
,
∂

∂ϕ

)
= − sin2 ϑ

(
2FF′r − 1 + F2

)
,

0 = ric

(
∂

∂ϑ
,
∂

∂ϑ

)
= −2FF′r + 1 − F2.

Hence

(rF2)′′ = (F2
+ 2rFF′)′ = 2(2FF′ + r(F′)2

+ rFF′′) = 0

by (5). Thus rF2 is of the form rF2
= br − 2m with constants b,m ∈ R. In other words,

F2
= b − 2m

r
.

Taking the limit shows

1 = lim
r→∞

F(r)2
= b
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Hence F2
= 1 − 2m/r and we find

g = −
(
1 − 2m

r

)
dt2
+

1

1 − 2m
r

dr2
+ r2gS 2 .

Then we indeed have ric ≡ 0. Note that we need to impose r , 2m.

Definition 4.1. For any m ≥ 0 the manifold R × ((0, 2m) ∪ (2m,∞)) × S 2 with the metric

g = −
(
1 − 2m

r

)
dt2
+

1

1 − 2m
r

dr2
+ r2gS 2

is called a Schwarzschild spacetime.

Summarizing the properties of Schwarzschild spacetime in physical and mathematical language

we have:

physical formulation mathematical formulation

radially symmetric

the standard O(3)-action on S 2,

extended trivially to the r- and t-axis,

is by isometries of the Schwarzschild metric

static R acts isometrically by translation on the t-axis

vacuum solution ric ≡ 0

asymptotic to Minkowski spacetime g − gMink
r→∞−→ 0

Definition 4.2. A curve

γ : s 7→ (t(s), r(s), ϕ(s), ϑ(s))

is called a Schwarzschild observer, if r ≡ r0, ϕ ≡ ϕ0, ϑ ≡ ϑ0, and if γ is future directed and

parametrized by proper time, i.e., t′ > 0, and g(γ′, γ′) = −1.
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Note

∇ ∂
∂t

∂

∂t
=

(r − 2m)m

r3

∂

∂r
.

For any Schwarzschild observer (with γ′ = t′ ∂∂t
) we have

−1 = g(γ′, γ′) = (t′)2g(
∂

∂t
,
∂

∂t
) = −(t′)2(1 − 2m

r0
).

Hence

t′ =
1√

1 − 2m
r0

and therefore

γ(s) =
(
t0 +

s√
1 − 2m

r0

, r0, ϕ0, ϑ0

)
.

t

r
B1 B22m

Figure 57.. Schwarzschild ob-

server

This parametrization by proper time shows that for a Schwarzschild observer B1 with small

r0 > 2m, less time elapses to traverse the same cosmic time interval (measured in the coordinate

t) than for a distant Schwarzschild observer with big r0. Hence clocks run slower when under the

influence of gravitation. The Global Positioning System (GPS) was the first technical installation

where this effect had to be taken into account.

A Schwarzschild observer is subject to the acceleration

∇
ds
γ′ = ∇( 1√

1− 2m
r0

∂
∂t

)


1√

1 − 2m
r0

∂

∂t


=

1

1 − 2m
r0

(r0 − 2m)m

r0
3

∂

∂r
=

m

r0
2

∂

∂r
.

This acceleration compensates for the gravitational attraction by the central mass. It has the

absolute value

m

r0
2

1√
1 − 2m

r0

r0→∞∼ m

r0
2
,

which approximates that of a central star of mass m in Newtonian gravity, see Section 2.1. Hence

m is interpreted as the mass of the astronomical object.

Definition 4.3. Let M be a semi-Riemannian manifold and let Φ : (−ε, ε) → Isom(M) be

such that Φ(0) = idM and assume that (−ε, ε) × M → M defined by (s, p) 7→ Φ(s)(p) is

smooth. Then the vector field ξ, defined by

ξ|p :=
d

ds
Φ(s)(p)|s=0,

is called a Killing vector field.
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Example 4.4. Let M = S 2 and

Φ(s) =



1 0 0

0 cos(s) − sin(s)

0 sin(s) cos(s)


.

The corresponding Killing vector field is
∂

∂ϕ
in polar coordinates.

b

b

Figure 58.. Killing vector field

on S 2

Lemma 4.5. Let (M, g) be a semi-Riemannian manifold, let ξ be a Killing vector field on M

and let γ be a geodesic in M. Then the function

t 7→ g(γ′(t), ξ|γ(t))

is constant.

Proof. a) We first check that Killing vector fields have a skew symmetric covariant differential,

i.e. ξ satisfies

〈∇Xξ, X〉 = 0

for all tangent vectors X.

Indeed, since each Φ(s) is an isometry we have Φ(s)∗g = g and we get for the Lie derivative:

Lξg =
d

ds
|s=0Φ(s)∗g = 0.

Now if X is an arbitrary vector field we find

0 = (Lξg)(X, X) = Lξ(g(X, X)) − g(LξX, X) − g(X,LξX)

= ∂ξ(g(X, X)) − 2g([ξ, X], X) = 2g(∇ξX, X) − 2g([ξ, X], X) = 2g(∇Xξ, X).

b) Now we compute

d

dt
〈γ′(t), ξ(γ(t)〉 = 〈 ∇

dt
γ′(t), ξ(γ(t)〉 + 〈γ′(t),∇γ′(t)ξ(γ(t)〉 = 0 + 0 = 0. �

This lemma is a version of Noether’s theorem; infinitesimal symmetries (Killing vector fields)

give rise to conservation laws.

In the Schwarzschild model M, ∂
∂t

is a Killing vector field because M is static and ∂
∂ϕ is a Killing

vector field because M is radially symmetric. Lemma 4.5 implies that for geodesics

γ(s) = (t(s), r(s), ϕ(s), ϑ(s))
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with ϑ ≡ π
2

(i.e. in particular γ′ = t′ ∂∂t
+ r′ ∂∂r

+ ϕ′ ∂∂ϕ ),

the energy E :=

〈
γ′,

∂

∂t

〉
= −t′h and the angular momentum L :=

〈
γ′,

∂

∂ϕ

〉
= ϕ′r2

are constant. Here, h(r) := 1 − 2m/r. With this notation, the Schwarzschild metric takes the

form g = −h(r)dt2
+

1
h(r)

dr2
+ r2gS 2 . For a lightlike geodesic we now have

0 =
〈
γ′, γ′

〉
= −(t′)2 · h + (r′)2

h
+ r2(ϕ′)2

= t′ · E + (r′)2

h
+ ϕ′ · L.

Multiplying by h, this implies the energy equation for light particles

E2
= (r′)2

+ ϕ′ · Lh = (r′)2
+

L2

r2
h.

For massive particles, we obtain

−1 =
〈
γ′, γ′

〉
= t′E +

(r′)2

h
+ ϕ′L.

This yields the energy equation for massive particles

E2
= (r′)2

+ ϕ′ · Lh + h = (r′)2
+

(
L2

r2
+ 1

)
h.

4.1.1. Trajectories of massless particles

If L = 0 then ϕ and r′ are constant and we have a simple collision orbit. So let us focus on the

case L , 0. Put

V(r) :=
L2

r2
h(r) =

L2

r2

(
1 − 2m

r

)
.

We have V(2m) = 0, lim
r→∞

V(r) = 0 and lim
r→0

V(r) =

−∞. We determine the extrema:

0
!
= V ′(r)

= −2
L2

r3

(
1 − 2m

r

)
+

L2

r2

2m

r2

=
L2

r4
(−2r + 4m + 2m)

=
2L2

r4
(−r + 3m)

Thus there is only one extremum at r = 3m. Be-

cause of the behavior of V for r ց 0 and r → ∞,

r = 3m must be a maximum with V(3m) = L2

27m2 .

b b

Case 1

Case 2

Case 3

r

V(r)

2m 3m

Figure 59.. Energy diagram for massless par-

ticles in Schwarzschild

The energy equation takes the form E2
= (r′)2

+ V(r). In particular, V(r) ≤ E2.

Case 1: E2 <
L2

27m2
.



4.1. The Schwarzschild solution 89

Figure 60.. Collision-collision orbit

(a) r0 < 3m: collision-collision orbit.

(b) r0 > 3m: fly-by orbit. Unlike in Newtonian gravity, even light is deflected under the influ-

Figure 61.. Fly-by orbit

ence of gravitation. Indeed,

lim
s→∞

ϕ(s) − lim
s→−∞

ϕ(s) =

∫ ∞

−∞
ϕ′(s) ds =

∫ ∞

−∞

L

r(s)2
ds , 0

if L , 0. Comparing the apparent distance of stars with the one observed during an eclipse one

can measure this light deflection. This has been the first experimental confirmation of general

relativity.

ϕ1 ϕ2

apparent

position of

fixed star

sun

moon

earth

Figure 62.. Deflection of light

Case 2: E2
=

L2

27m2
.

(a) r ≡ 3m: exceptional orbit, the photon sphere.

(b) r0 < 3m or r0 > 3m: spiral orbits.
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2m

3m

r0 < 3m

2m

3m

r0 = 3m

2m

3m

r0 > 3m

Figure 63.. Spiral orbits and photon sphere

Case 3: E2 > L2

27m2 : collision-escape orbit.

2m

3m

Figure 64.. Collision-escape orbit

These orbits not being straight lines has an impact on the sight angle. Astronomical objects

appear to be bigger than they are.

classical relativistic

b ϕ1 b ϕ2

Figure 65.. Classical versus relativistic sight angle

4.1.2. Orbits of massive particles

Now set

V(r) :=

(
L2

r2
+ 1

)
h(r).

We have V(2m) = 0, lim
r→∞

V(r) = 1 and lim
r→0

V(r) = −∞. The local extrema are at

r1,2 =
L2

2m
± L

√
L2

4m2
− 3.

Case 1: L2 < 12m2, i.e. there are no local extrema.
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V(r)

r
b

2m

1
Case 1.a

Case 1.b

Figure 66.. Energy diagram for massive particles in Schwarzschild for L2 < 12m2

(a) E2 < 1: collision-collision orbit.

3m

2m

Figure 67.. Collision-collision orbit

(b) E2 ≥ 1: collision-escape orbit.

3m

2m

Figure 68.. Collision-escape orbit

Case 2: 12m2 ≤ L2 < 16m2.

V(r)

r

1

Case
2.a

Case 2.b

Case 2.c

Case 2.d

2m
b

Figure 69.. Energy diagram for massive particles in Schwarzschild for 12m2 ≤ L2 < 16m2
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(a) E2 < V(r1) and r0 < r1: collision-collision

orbit.

3m

2m

Figure 70.. Collision-collision orbit

(b) E2 < V(r1) and r0 > r1: bounded orbit.

Figure 71.. Bounded orbit

(c) V(r1) < E2 < 1: collision-collision orbit.

Figure 72.. Collision-collision orbit

(d) E2 ≥ 1: collision-escape orbit.

3m

2m

Figure 73.. Collision-escape orbit

Case 3: L2 > 16m2.

V(r)

r

1

C
a
se

3
.a

Case 3.b

Case 3.c

Case 3.d

2m
b

Figure 74.. Energy diagram for massive particles in Schwarzschild for L2 < 16m2
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(a) E2 < V(r1) and r0 < r1: collision-collision

orbit.

3m

2m

Figure 75.. Collision-collision orbit

(b) V(r2) < E2 < 1 and r0 > r1: bounded orbit.

Figure 76.. Bounded orbit

(c) 1 ≤ E2 < V(r1) and r0 > r1: fly-by orbit.

Figure 77.. Fly-by orbit

(d) E2 > V(r1): collision-escape orbit.

3m

2m

Figure 78.. Collision-escape orbit

Definition 4.6. The constant 2m is called the Schwarzschild radius.

4.1.3. Kruskal coordinates

We note that the Schwarzschild metric is ill defined at r = 2m and at r = 0. At r = 2m

the function h(r) vanishes and at r = 0 the coefficient r2 in the metric vanishes. One may

wonder whether this is due to an actual singular behavior of the metric as r approaches 2m or 0,

respectively, or if the singularity is only caused by a suboptimal choice of coordinates.

In fact, for m = 0, when both singular values coincide, coordinates can be changed in such a way

that the singularity at r = 0 disappears. Namely, for m = 0 the Schwarzschild metric is noting

but the Minkowski metric where the Euclidean part on R3 is parametrized by polar coordinates.

Switching to Cartesian coordinates will make the singularity disappear.

It is indeed possible to remove the singularity at r = 2m for m > 0 in a similar fashion. Set

f (r) := (r − 2m)e
r

2m
−1.

Then f : (0,∞)→ (− 2m
e
,∞) is a diffeomorphism, because

f ′(r) = e
r

2m
−1
+ (r − 2m) 1

2m
e

r
2m
−1
=

r
2m

e
r

2m
−1 > 0.

We have f ((0, 2m)) = (− 2m
e
, 0) and f ((2m,∞)) = (0,∞).



94 4. Black holes

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

5
f(r) = (r− 2m)er/2m− 1

Figure 79.. Auxiliary function for coordinate change

We consider the smooth map

{(u, v) | uv > − 2m
e
, u , 0, v , 0} → {(t, r) | r > 0, r , 2m}

given by

r = f −1(uv), t = 2m · ln
(∣∣∣∣∣

v

u

∣∣∣∣∣
)
.

The map is a local diffeomorphism because

det


∂r
∂u

∂r
∂v

∂t
∂u

∂t
∂v

 = det


v( f −1)′(uv) u( f −1)′(uv)

− 2m
u

2m
v

 = 4m( f −1)′(uv) > 0.

It is surjective but not injective since (u, v) and (−u,−v) are mapped to the same point.

II+

II−

I+

I−
r=0

r=0

r=m
u
r=3m

v

r=2m
r

t

I

II

2m

Figure 80.. Kruskal coordinates



4.1. The Schwarzschild solution 95

We take the product with the identity on S 2 and pull the Schwarzschild metric back. We compute

dt = 2m d(ln |v| − ln |u|) = 2m
(dv

v
− du

u

)
,

dt ⊗ dt = 4m2
(du ⊗ du

u2
− du ⊗ dv

uv
− dv ⊗ du

uv
+

dv ⊗ dv

v2

)
,

dr = d( f −1(uv)) = ( f −1)′(uv)(udv + vdu) =
udv + vdu

f ′(r)
=

2m

r
e1− r

2m (udv + vdu),

dr ⊗ dr =
4m2

r2
e2− r

m (v2du ⊗ du + uvdu ⊗ dv + uvdv ⊗ du + u2dv ⊗ dv).

Using uv = f (r) = (r − 2m)e
r

2m
−1 we find

−h(r)dt ⊗ dt = −4m2h(r)

f (r)2
(v2du ⊗ du − uvdu ⊗ dv − uvdv ⊗ du + u2dv ⊗ dv)

=
4m2

r(r − 2m)
e2− r

m (−v2du ⊗ du + uvdu ⊗ dv + uvdv ⊗ du − u2dv ⊗ dv),

1

h(r)
dr ⊗ dr =

4m2

r(r − 2m)
e2− r

m (v2du ⊗ du + uvdu ⊗ dv + uvdv ⊗ du + u2dv ⊗ dv),

and therefore

−h(r)dt ⊗ dt +
1

h(r)
dr ⊗ dr =

4m2

r(r − 2m)
e2− r

m · 2uv(du ⊗ dv + dv ⊗ du)

=
8m2

r
e1− r

2m (du ⊗ dv + dv ⊗ du).

This gives us for the Schwarzschild metric

g = 8m2

r
e1− r

2m (du ⊗ dv + dv ⊗ du) + r2gS 2

=
8m2

f −1(uv)
e1− f−1(uv)

2m (du ⊗ dv + dv ⊗ du) + f −1(uv)2gS 2 .

The crucial observation is now that this metric extends smoothly to u = 0 and v = 0. By passing

to the Kruskal coordinates u and v we can extend the Schwarzschild metric smoothly across the

event horizon r = 2m.

In other words, if we define the Kruskal plane

Kr = {(u, v) | uv > − 2m
e
}

equipped with the metric gKr =
8m2

r
e1− r

2m (du ⊗ dv + dv ⊗ du) where f (r) = uv, then the manifold

Kr× S 2 with (R× {0} ∪ {0} ×R)× S 2 removed and equipped with the metric gKr + r2gS 2 maps as

a local isometry onto the Schwarzschild spacetime. The regions I± map onto the interior region

I and the regions II± map onto the outer region II. Note that Kr and hence Kr× S 2 is connected.

On the outer region II, the time orientation of the Schwarzschild spacetime is characterized by

t′ > 0. In Kruskal coordinates this means on II+:

0 < t′ = 2m
(v′

v
− u′

u

)
= 2m

v′u − u′v

uv
⇐⇒ v′u − u′v > 0.
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This shows that − ∂
∂u

and ∂
∂v

are future-directed lightlike vector fields on II+. We can now extend

this time-orientation in a unique manner continuously to all of Kr × S 2 by demanding that − ∂
∂u

and ∂
∂v

are future-directed everywhere. Future-directed curves in Kr move upwards or to the left

or both simultaneously. Thus the cannot leave the region I−. The union of II+ and I− yields a

model for a black hole. Anything that has passed the event horizon from the outer region can

never pass it again. Similarly, The union of II+ and I+ yields a model for a white hole. Nothing

can pass the event horizon from the outer region to the interior region, only passages in the

opposite direction are possible.

4.1.4. The singularity at r = 0

Now, how about the singularity at r = 0? Can we find a suitable coordinate change which will

remove this singularity? We know it is possible if m = 0 but how about m > 0?

It is impossible indeed. This can be seen by considering a curvature quantity which is defined

inpendently of the choice of a coordinate system and which explodes as r → 0. The scalar cur-

vature is unfortunately not helpful because it vanishes identically since the Schwarzschild space-

time is Ricci-flat. There is another curvature function that helps us out here, so Kretschmann

scalar curvature. It is defined as the square of the full Riemann curvature tensor with respect to

the metric induced on the space of curvature tensors by the Lorentzian metric. This is defined

invariantly, but can be expressed in coordinates as

Km = g(R,R) =
∑

gii′g
j j′gkk′gll′Ri

jklR
i′

j′k′l′

where we sum over all indices. In the case of the Schwarzschild spacetime one finds

Km =
48m2

r6
.

In particular, Km → ∞ as r → 0. Thus Schwarzschild cannot be extended to r = 0. Note that

this argument fails if m = 0.

At r = 0 we have a true singularity of the spacetime. The Penrose singularity theorem says that

under certain natural conditions such singularities must necessarily form, see e.g. [7, Ch. 14].

4.2. Rotating black holes - the Kerr solution

Our goal in this section will be to generalize the Schwarzschild

solution and allow for rotation of the gravitating object. This solu-

tion was found by Roy Patrick Kerr in 1963, a mathematician born

in 1934 in New Zealand.

4.2.1. The ansatz

The ansatz is the following: On a suitable open subset of R2 × S 2

we will define the Kerr metric g(m,a) depending on 2 fixed parame-

ters m > 0 and a ∈ R. The physical interpretation of m will be the

mass of the black hole just like for the Schwarzschild solution and

a will be interpreted as angular momentum per unit mass.
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Figure 81.. Roy Patrick Kerr
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On the first factor of the product manifold R2×S 2 we use standard coordinates which we denote

by (t, r). On the sphere S 2 ⊂ R3 we consider the usual polar coordinate functions

ϕ : S 2 \ {(0, 0,±1)} → S 1
= R/2πZ,

ϑ : S 2 \ {(0, 0,±1)} → (0, π),

in such a way that S 2 \ {(0, 0,±1)} is parametrized by

x = sinϑ cos ϕ, y = sinϑ sin ϕ, z = cosϑ.

Next we define the two auxiliary functions ρ,∆ : R2 × S 2 → R by

ρ2 := r2
+ a2 cos2 ϑ,

∆ := r2 − 2mr + a2.

We consider the Riemannian metric g(m,a) whose components in the basis (∂t, ∂r, ∂ϑ, ∂ϕ) are

given by 

−1 + 2mr
ρ2 0 0 − 2mra sin2 ϑ

ρ2

0
ρ2

∆
0 0

0 0 ρ2 0

− 2mra sin2 ϑ
ρ2 0 0 (r2

+ a2
+

2mra2 sin2 ϑ
ρ2 ) sin2 ϑ



. (6)

Remark 4.7. (1) In the literature these expressions are called the components of the Kerr metric

in Boyer-Lindquist coordinates.

(2) If we set a = 0 we obtain the Schwarzschild metric defined on R× ((0, 2m)∪ (2m,∞))× S 2.

(3) If we set m = 0 we obtain the Minkowski metric in coordinates t, r, ϑ, ϕ on R ×U where U

is an open subset of R3 parametrized by

x =
√

r2 + a2 sin ϑ cos ϕ, y =
√

r2 + a2 sin ϑ sin ϕ, z = r cosϑ,

see the check B.2.1 by SageMath.

(4) Note that the coordinate r may take values in all of R including negative ones.

From now on we assume m > 0 and a > 0 unless stated otherwise. The first question that arises

is: On which subset of R2 × S 2 does g(m,a) give a well-defined Lorentzian metric?

Looking at the form of g(m,a) in (6) we see that we have to impose the following conditions:

(a) We need ρ , 0. Therefore we exclude the ring singularity

Σ := ρ−1(0) = R × {0} × {
σ ∈ S 2

∣∣∣ϑ(σ) = π
2

}
.

(b) We need ∆ , 0. Therefore we exclude H := ∆−1(0). In order to determine the solutions r to

the equation

0 = ∆ = r2 − 2mr + a2

we distinguish three cases:
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1. If a > m the equation has no real solution r and consequently H = ∅. We call this metric a

rapidly rotating black hole.

2. If a = m the only solution is r = m and we have H = R × {m} × S 2. We call this metric an

extremal black hole.

3. If a < m we have two real solutions r± := m ±
√

m2 − a2 and we put

H± := R × {r±} × S 2, H = H− ∪ H+.

We call H− and H+ the inner and the outer horizon respectively and we call the metric a

slowly rotating black hole.

∆(r)

r
b bb b b

m 2mr− r+

fast Kerr

extreme Kerr

slow Kerr

Schwarzschild

Figure 82.. The function ∆

(c) We need sin ϑ , 0. Therefore we exclude A := A+ ∪ A− where

A± := R2 × {(0, 0,±1)}.

The following picture shows a slice t = const in R2 × S 2 in the case of a slowly rotating black

hole. The labels Σ, H±, A± denote the slices of the respective subsets. Now we have removed all

subsets of R2 × S 2 where the definition of g(m,a) encounters problems. In other words, g(m,a) is a

well-defined smooth (0, 2)-tensor field on R2 × S 2 \ (Σ∪H ∪ A). Next we have to check that the

tensor field g(m,a) is actually a Lorentzian metric on R2 × S 2 \ (Σ ∪ H ∪ A).

We first need the following lemma.

Lemma 4.8 (Boyer-Lindquist identities).

gϕϕ + a sin2 ϑgϕt = (r2
+ a2) sin2 ϑ, (BL1)

gtϕ + a sin2 ϑgtt = −a sin2 ϑ, (BL2)

agϕϕ + (r2
+ a2)gtϕ = ∆a sin2 ϑ, (BL3)

agtϕ + (r2
+ a2)gtt = −∆. (BL4)

Proof. This is a straighforward computation, see B.2.2. �



4.2. Rotating black holes - the Kerr solution 99

r → −∞ r = 0 r− r+ r
Σ

H−

H+

A+

A−

Figure 83.. Ring singularity, horizons, and axis

Reordering the basis vectors to (∂t, ∂ϕ, ∂r, ∂ϑ) the tensor field g(m,a) has the matrix representation



−1 + 2mr
ρ2 − 2mra sin2 ϑ

ρ2 0 0

− 2mra sin2 ϑ
ρ2 (r2

+ a2
+

2mra2 sin2 ϑ
ρ2 ) sin2 ϑ 0 0

0 0
ρ2

∆
0

0 0 0 ρ2



.

Lemma 4.9. (1) gttgϕϕ − g2
tϕ = −∆ sin2 ϑ,

(2) det(gi j) = −ρ4 sin2 ϑ.

Proof. Using (BL1), (BL2), and (BL4) we compute

gttgϕϕ − g2
tϕ = gtt((r

2
+ a2) sin2 θ − a sin2 θgϕt) − gtϕ(−a sin2 θ − a sin2 θgtt)

= (r2
+ a2) sin2 θgtt + a sin2 θgtϕ

= −∆ sin2 θ.

This shows the first identity and the second one follows immediately. �

We distinguish two cases:
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(1) ∆ > 0: The component matrix is

(gi j) =



g̃i j

+

+



where + denotes a positive entry and g̃ ∈ R2×2 has det(̃g) < 0. Thus (gi j) has Lorentzian

signature.

(2) ∆ < 0: The component matrix is

(gi j) =



g̃i j

−

+



where ± denote a positive/negative entry and g̃ ∈ R2×2 has det(̃g) > 0. In order to conclude

that (gi j) has Lorentzian signature it remains to show that all eigenvalues of g̃ are positive. This

follows if we can show that g̃11 is positive. Using that cos2 ϑ ≤ 1 we obtain

g̃11 = −1 +
2mr

ρ2
= −r2

+ a2 cos2 ϑ − 2mr

ρ2
≥ −r2

+ a2 − 2mr

ρ2
= − ∆

ρ2
> 0.

Hence in both cases we obtain a Lorentzian metric.

4.2.2. Extension across the axis

We have shown that g(m,a) defines a Lorentzian metric on R2 × S 2 \ (Σ ∪ H ∪ A). Our next aim

is to extend g(m,a) across the subset A. As a first step we recall that we have parametrized R3 by

spherical coordinates

x = R sinϑ cos ϕ, y = R sinϑ sin ϕ, z = R cos ϑ.

It follows that

xdy − ydx = R2 sin2 ϑdϕ (7)

and therefore sin2 ϑdϕ extends uniquely to a smooth 1-form on all of S 2 (in contrast to dϕ itself).

The extended 1-form vanishes at the points (0, 0,±1).

Lemma 4.10. On R2 × S 2 \ (Σ ∪ H ∪ A) we have

g(m,a) =
ρ2

∆
dr2
+ ρ2gS 2 + a2 sin4 ϑdϕ2 − dt2

+
2mr

ρ2
(dt − a sin2 ϑdϕ)2 (8)

where gS 2 denotes the standard metric on S 2.
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Proof. See Exercise 4.8. �

Corollary 4.11. The metric g(m,a) can be extended uniquely to a Lorentzian metric on R2 ×
S 2 \ (Σ ∪ H).

Proof. All terms on the right hand side of (8) can be extended smoothly across A. The exten-

sion is unique since the complement of A is dense. It remains to show that the extension has

Lorentzian signature on A. To see this recall that on A we have sin2 ϑdϕ = 0 and thus

g(m,a) =
ρ2

∆
dr2
+ ρ2gS 2 − dt2

+
2mr

ρ2
dt2
=
ρ2

∆
dr2
+ ρ2gS 2 − ∆

ρ2
dt2.

Thus in both cases ∆ > 0 and ∆ < 0 the extension of g(m,a) has Lorentzian signature on A. �

Definition 4.12. The connected components of R2 × S 2 \ (Σ ∪ H) are called Boyer-Lindquist

blocks. We will denote them as follows:

slowly rotating case: I := R × (r+,∞) × S 2

II := R × (r−, r+) × S 2

III := R × (−∞, r−) × S 2 \ Σ

extremal case: I := R × (m,∞) × S 2

III := R × (−∞,m) × S 2 \ Σ

rapidly rotating case: I := III := R × R × S 2 \ Σ.

4.2.3. Isometries and special submanifolds

In the following we denote by Kerrm,a the manifold R × R × S 2 \ (Σ ∪ H) equipped with the

metric g(m,a). We will sometimes denote g(m,a) by 〈·, ·〉. The elements of Kerrm,a will be denoted

by (t, r, σ). We examine some of the isometries of Kerrm,a:

(1) Let t0 ∈ R and consider the translation

Tt0 : Kerrm,a → Kerrm,a, (t, r, σ) 7→ (t + t0, r, σ).

We observe that

T ∗t0 (dϑ) = dϑ, T ∗t0(dϕ) = dϕ, T ∗t0(dr) = dr, T ∗t0(dt) = dt,

and that the coefficients of g(m,a) are independent of t. It follows that T ∗t0g(m,a) = g(m,a), i.e. Tt0 is

an isometry for every t0 ∈ R. Since for every p ∈ Kerrm,a we have

d

ds
Ts(p)|s=0 = ∂t |p
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the vector field ∂t is a Killing vector field on Kerrm,a.

(2) Let ϕ0 ∈ R and consider

Rϕ0
: Kerrm,a → Kerrm,a, (t, r, σ) 7→ (t, r,Rϕ0

σ),

where Rϕ0
: S 2 → S 2 is the rotation

Rϕ0
=



cos ϕ0 − sin ϕ0 0

sin ϕ0 cos ϕ0 0

0 0 1


.

In polar coordinates we have (t, r, ϑ, ϕ) 7→ (t, r, ϑ, ϕ + ϕ0) and as above it follows that Rϕ0
is an

isometry for every ϕ0 ∈ R. Since for every p ∈ Kerrm,a we have

d

ds
Rs(p)|s=0 = ∂ϕ|p

the vector field ∂ϕ is a Killing vector field on Kerrm,a. Moreover if ϕ0 , 0 mod 2π, the set of

fixed points of Rϕ0
is

Fix(Rϕ0
) = R2 × {(0, 0,±1)} = A.

Thus the axis A is a 2-dimensional totally geodesic submanifold of Kerrm,a.

(3) Let

ε : Kerrm,a → Kerrm,a, (t, r, σ) 7→ (t, r, Sσ),

where S : S 2 → S 2 is the reflection

S =



1 0 0

0 1 0

0 0 −1


.

In polar coordinates, S is the map (t, r, ϑ, ϕ) 7→ (t, r, π − ϑ, ϕ). Since sin2(π − ϑ) = sin2 ϑ and

d(π − ϑ) = −dϑ and dϑ occurs only quadratic in g(m,a) it follows that ε is an isometry. The set of

fixed points of ε is the equatorial hyperplane

Eq := Fix(ε) = R2 ×
{
σ ∈ S 2

∣∣∣∣ϑ(σ) =
π

2

}
\ (Σ ∪ H).

Thus Eq is a 3-dimensional totally geodesic submanifold of Kerrm,a. The isometries in (2) and

(3) are the ones which survive from the O(3)-symmetries of the Schwarzschild solution.

(4) Let t0 ∈ R and let the two maps Φt0 , ΨE: Kerrm,a → Kerrm,a be defined by

Φt0 (t, r, σ) = (2t0 − t, r, σ), ΨE(t, r, σ) = (t, r, S Eσ),

where S E: S 2 → S 2 is the reflection about a two-dimensional plane containing both points

(0, 0,±1). If we allow negative values of a in the definition of g(m,a) we obtain

Φ
∗
t0

g(m,a) = Ψ
∗
Eg(m,a) = g(m,−a).
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Thus the composition Φt0 ◦ΨE: Kerrm,a → Kerrm,a is an isometry and the set of fixed points

Fix(Φt0 ◦ ΨE) = ({t0} × R × (S 2 ∩ E)) \ (Σ ∪ H)

is a 2-dimensional totally geodesic submanifold of Kerrm,a. Unlike in Schwarzschild spacetime,

the hypersurfaces of constant t are not totally geodesic submanifolds of Kerrm,a.

We examine further interesting submanifolds of Kerrm,a.

(5) Let r0 ∈ R and ϑ0 ∈ (0, π). The set

KOr0,ϑ0
:= R × {r0} × {σ ∈ S 2 |ϑ(σ) = ϑ0} \ (Σ ∪ H)

is called the Killing orbit for r0 and ϑ0. It is a submanifold of Kerrm,a which is not totally

geodesic. But it is interesting to note that the metric g(m,a) on KOr0,ϑ0
has constant coefficients

with respect to the basis vectors (∂t, ∂ϕ)


−1 + 2mr0

ρ2
0

− 2mr0a sin2 ϑ0

ρ2
0

− 2mr0a sin2 ϑ0

ρ2
0

(r2
0
+ a2
+

2mr0a2 sin2 ϑ0

ρ2
0

) sin2 ϑ0



where ρ2
0

:= r2
0
+ a2 cos2 ϑ0. It follows that KOr0,ϑ0

is flat.

(6) The set

Thr := R × {0} × (S 2 \ Σ)

is called the throat of Kerrm,a. The metric g(m,a) on Thr with respect to the basis vectors

(∂t, ∂ϑ, ∂ϕ) is given by 

−1 0 0

0 a2 cos2 ϑ 0

0 0 a2 sin2 ϑ


.

We define a local parametrization of the disk

D(a) := {(ξ1, ξ2) ∈ R2 | (ξ1)2
+ (ξ2)2 < a}

by setting

ξ1 := a sin ϑ cos ϕ, ξ2 := a sinϑ sin ϕ, ϑ ∈
(
0,
π

2

)
, ϕ ∈ S 1,

and we compute

(dξ1)2
+ (dξ2)2

= a2 cos2 ϑ(dϑ)2
+ a2 sin2 ϑ(dϕ)2.

The throat has two connected components

Thr± := R × {0} ×
{
σ ∈ S 2

∣∣∣∣ϑ(σ) ≶
π

2

}
.

By the above formulas, we obtain two isometries

Thr± → (R × D(a),−dt2
+ (dξ1)2

+ (dξ2)2).

Hence both connected components of the throat are isometric to an open subset of 2 + 1-

dimensional Minkowski space. In particular, the throat is flat.
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Definition 4.13. A Lorentzian manifold is called stationary if it admits a timelike Killing

vector field.

For example in Schwarzschild spacetime the vector field ∂t is a Killing vector field and it is

timelike in the outer part R× (2m,∞)× S 2. In Kerr spacetime the vector field ∂t is also a Killing

vector field. On which subset of Kerrm,a is ∂t timelike?

We have to check where gtt < 0 holds. Using that cos2 ϑ ≤ 1 we estimate

gtt =
−r2 − a2 cos2 ϑ + 2mr

ρ2
≥ −r2 − a2

+ 2mr

ρ2
= − ∆

ρ2
.

On the Boyer-Lindquist block II we have ∆ < 0 and thus gtt > 0. We expect that at some points

of the Boyer-Lindquist blocks I and III we also have gtt > 0.

Definition 4.14. The subsets

E := {p ∈ I | gtt(p) > 0}, E′ := {p ∈ III | gtt(p) > 0}

are called ergospheres.

On the intersection (I∪ III)∩A with the axis A we have cos ϑ = ±1 and therefore gtt = − ∆ρ2 < 0.

Thus we have E∩A = ∅ and E′∩A = ∅. On the equatorial hyperplane Eq we have cos ϑ = 0 and

therefore gtt =
r(2m−r)

ρ2 and this is positive if and only if r ∈ (0, 2m). In a surface of constant t and

ϕ the ergospheres can be pictured as follows (the radius in the picture is an exponential function

of r).

Remark 4.15. The submanifolds I \ E and III \ E′ are stationary since ∂t is a timelike Killing

vector field on these submanifolds. We define

L := {p ∈ Kerrm,a | gtt(p) = 0}.

Lemma 4.16. We have L = ∂E ∪ ∂E′ and L is a smooth timelike hypersurface of Kerrm,a.

Proof. (a) We write gtt = ρ
−2 f with

f (r, ϑ) = −r2 − a2 cos2 ϑ + 2mr.
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E′E II

A+

A−

r → −∞ 0 r− r+ 2m r

Figure 84.. Ergospheres

Then we have L = f −1(0) and

d f = 2(m − r)dr + 2a2 cosϑ sin ϑdϑ.

If we have d f |p = 0 for some p ∈ Kerrm,a, then r = m and thus p ∈ II. Thus d f is nowhere zero

on L. This implies that L is a smooth hypersurface of Kerrm,a and that f changes its sign at L. In

particular, in every neighborhood of L one can find points p, q with gtt(p) > 0 and gtt(q) < 0. It

follows that L ⊂ ∂E ∪ ∂E′. The inclusion L ⊃ ∂E ∪ ∂E′ is clear by definition of E and E′.
(b) It remains to show that the induced metric on L has Lorentzian signature. First we note that

L ∩ A = ∅ since on A we have cos2 ϑ = 1 and hence f = (2m − r)r − a2
= −∆ , 0. Thus the

vector field ∂ϑ can be defined on all of L. Clearly the vector fields ∂t, ∂r, ∂ϕ can also be defined

on all of L. Since we have

d f (∂t) = d f (∂ϕ) = 0

we conclude that ∂t and ∂ϕ are tangential to L. By Lemma 4.9 we have on L

gttgϕϕ − g2
tϕ = −∆ sin2 ϑ < 0

and thus ∂t and ∂ϕ generate a 2-dimensional subspace of TpL with Lorentzian signature. It

remains to find a spacelike vector field on L which is perpendicular to this subspace. We set

V := a2 cos ϑ sinϑ∂r + (r − m)∂ϑ.

We easily compute that d f (V) = 0 and thus we have V ∈ TpL. Furthermore V is everywhere

orthogonal to ∂t and ∂ϕ. Using the coefficients of the metric g(m,a) we compute

〈V,V〉 = a4 cos2 ϑ sin2 ϑ
ρ2

∆
+ (r − m)2ρ2 > 0.

Thus V is spacelike and TpL has Lorentzian signature. �
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4.2.4. Causality properties and the time machine

We now define a time orientation on the Boyer-Lindquist block I. First we equip I \ E with the

time orientation for which ∂t is future-directed. From the coefficients of the metric g(m,a) we see

immediately that for every t0 ∈ R the hypersurface {t0}× (r+,∞)×S 2 of I is spacelike. It follows

that the vector field gradt is timelike on all of I (note that this does not contradict the fact that ∂t

is not everywhere timelike on I). Furthermore on I \ E we have

〈gradt, ∂t〉 = dt(∂t) = 1 > 0

and thus gradt is past-directed. We extend the time orientation to all of I by requiring that gradt

should be past-directed everywhere. Therefore if α: J → I is a causal curve defined on some

interval J ⊂ R, then α is future-directed if and only if

0 < 〈α′, gradt〉 = (t ◦ α)′ (9)

on J. This characterization holds even on E where ∂t is spacelike.

Now we want to investigate what happens to a massive particle or to a photon in I as it enters

the ergosphere E and approaches the horizon H+.

Proposition 4.17. (1) Let α: J → E or α: J → E′ be a causal curve. Then for all s ∈ J we

have

(ϕ ◦ α)′(s) , 0.

(2) Let α: J → E be a future-directed causal curve. Then for all s ∈ J we have

(ϕ ◦ α)′(s) > 0.

(3) Let α: (s0, s1) → E be a future-directed causal curve with (r ◦ α)(s) → r+, (ϑ ◦ α)(s) →
ϑ0 ∈ (0, π) and (r ◦ α)′(s)→ r∗ , 0 as sր s1. Then, as sր s1, we have

(ϕ ◦ α)′(s)→ ∞ and (t ◦ α)′(s)→ ∞.

Here we have identified the map ϕ: S 2 \ {(0, 0,±1)} with a lift ϕ: S 2 \ {(0, 0,±1)} → R. The

condition (ϕ ◦ α)′ > 0 then denotes a positively oriented tangent vector to S 1. By the first two

assertions in this proposition a particle or a photon entering the ergospheres is forced to rotate

in a direction determined by the parameter a. This suggests that a should indeed be interpreted

physically as angular momentum per unit mass.

Proof. Ad (1). For fixed ϕ0 ∈ S 1 we consider the hypersurface Nϕ0
:= {(t, r, σ) ∈ Kerrm,a \

A |ϕ(σ) = ϕ0}. At every point of p ∈ Nϕ0
the vectors ∂t, ∂r and ∂ϑ form a basis of TpNϕ0

. We

recall that ∂ϑ is spacelike on Kerrm,a \ A, ∂r is spacelike on I ∪ III and ∂t is spacelike on E ∪ E′.
It follows that along the trace of α, the hypersurface Nϕ0

is spacelike. Thus α′(s) < Tα(s)Nϕ0
for

all s ∈ J. This implies that (ϕ ◦ α)′(s) , 0 for all s.
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Ad (2). Since α is causal we have 〈α′(s), α′(s)〉 ≤ 0 for every s ∈ J and thus

0 ≥ gtt(α)(t ◦ α)′2 + grr(α)(r ◦ α)′2 + gϑϑ(α)(ϑ ◦ α)′2 + gϕϕ(α)(ϕ ◦ α)′2

+ 2gtϕ(α)(t ◦ α)′(ϕ ◦ α)′. (10)

Recall that on E we have gtt > 0, grr > 0, gϑϑ > 0, gϕϕ > 0 and (ϕ ◦ α)′2 > 0 by (1). Thus we

obtain

0 > 2gtϕ(α)(t ◦ α)′(ϕ ◦ α)′.

Since on E we have gtϕ < 0 and (t ◦ α)′ > 0 by (9), we conclude that (ϕ ◦ α)′ > 0.

Ad (3). Since on E we have gtt > 0, gϑϑ > 0, gϕϕ > 0, gtϕ < 0 and using (10) we obtain

grr(α)(r ◦ α)′2 ≤ grr(α)(r ◦ α)′2 + gϑϑ(α)(ϑ ◦ α)′2 + gϕϕ(α)(ϕ ◦ α)′2

≤ −2gtϕ(α)(t ◦ α)′(ϕ ◦ α)′ − gtt(α)(t ◦ α)′2

= 2
|gtϕ(α)|
√

gtt(α)
(ϕ ◦ α)′

√
gtt(α)(t ◦ α)′ − gtt(α)(t ◦ α)′2

= −
( |gtϕ(α)|
√

gtt(α)
(ϕ ◦ α)′ −

√
gtt(α)(t ◦ α)′

)2
+

gtϕ(α)2

gtt(α)
(ϕ ◦ α)′2

≤
gtϕ(α)2

gtt(α)
(ϕ ◦ α)′2. (11)

Using r2 ≤ ρ2 we estimate

g2
tϕ

gtt

=
4m2r2a2 sin4 ϑ

ρ4

ρ2

−ρ2 + 2mr
=

4m2r2a2 sin4 ϑ

ρ2(−r2 + 2mr − a2 cos2 ϑ)
=

4m2r2a2 sin4 ϑ

ρ2(a2 sin2 ϑ − ∆)

≤ 4m2a2 sin4 ϑ

a2 sin2 ϑ − ∆
.

We evaluate this expression at α(s) and let s ր s1. Then ∆(α(s)) → 0 because of r(α(s)) → r+

and thus the right hand side tends to 4m2 sin2 ϑ0. Thus for s close to s1 we have
gtϕ(α)2

gtt(α)
≤

8m2 sin2 ϑ0 and therefore

grr(α)(r ◦ α)′2 ≤ 8m2 sin2 ϑ0(ϕ ◦ α)′2 ≤ 8m2(ϕ ◦ α)′2.

Furthermore as sր s1 we have by hypothesis

(r ◦ α)′(s)2 → (r∗)2 > 0 and grr(α(s))→ ∞.

Thus as sր s1 we obtain (ϕ ◦ α)′(s)2 → ∞ and by (2) we find (ϕ ◦ α)′(s)→ ∞.

Next we can repeat the estimate (11) with the roles of the coordinates t and ϕ interchanged and

we get

grr(α)(r ◦ α)′2 ≤
gtϕ(α)2

gϕϕ(α)
(t ◦ α)′2.
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Since in I we have 2mra2 sin2 ϑ ≥ 0 we estimate

g2
tϕ

gϕϕ
=

4m2r2a2 sin4 ϑ

ρ4

ρ2

(ρ2(r2 + a2) + 2mra2 sin2 ϑ) sin2 ϑ
≤ 4m2r2a2 sin2 ϑ

ρ4(r2 + a2)
≤ 4m2a2

ρ4
.

If we evaluate this expression at α(s) and let sր s1 the right hand side remains bounded. Thus

there exists C1 > 0 such that for all s close to s1 we have

grr(α)(r ◦ α)′2 ≤ C1(t ◦ α)′2.

As above we get (t ◦α)′(s)2 → ∞ as sր s1. Since α is future-directed we get (t ◦α)′(s)→∞.�

If there exists a closed timelike curve in a spacetime then this model of the universe predicts an

observer who can influence his own past. This is then interpreted as a violation of causality. We

want to investigate whether this can happen in Kerr spacetime.

Proposition 4.18. In the Boyer-Lindquist blocks I and II there exist no closed causal curves.

Proof. (a) Let α: J → I be a causal curve. Without loss of generality we may assume that α is

future-directed. By (9) we have (t ◦ α)′ > 0. Thus α is injective and in particular not closed.

(b) Let α: J → II be a causal curve. For fixed r0 ∈ (r−, r+) we consider the hypersurface

Nr0
:= R × {r0} × S 2 ⊂ II. At every point p ∈ Nr0

\ A the vector fields ∂t, ∂ϑ, ∂ϕ form a basis of

TpNr0
. Since 〈∂r, ∂t〉 = 〈∂r, ∂ϑ〉 = 〈∂r, ∂ϕ〉 = 0 the coordinate field ∂r is perpendicular to Nr0

\ A.

By continuity, this holds along all of Nr0
.

The vector field ∂r is timelike on II and thus the hypersurface Nr0
is spacelike. Since α is a

causal curve we have α′(s) < Tα(s)Nr0
for all s ∈ J and all r0 ∈ (r−, r+). It follows that (r ◦ α)′ is

nowhere zero. Thus α is injective and in particular not closed. �

In order to prepare the discussion of the Boyer-Lindquist block III we introduce the following

vector fields.

Definition 4.19. The canonical vector fields on Kerrm,a are defined by

V := (r2
+ a2)∂t + a∂ϕ, W := ∂ϕ + a sin2 ϑ∂t.

Note that Vand W are well-defined smooth vector fields on all of Kerrm,a since sin2 ϑ and ∂ϕ are

defined and smooth on all of S 2.
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Lemma 4.20. We have

g(m,a)(V,V) = −∆ρ2, g(m,a)(W,W) = ρ2 sin2 ϑ, g(m,a)(V,W) = 0.

Proof. This follows immediately from the Boyer-Lindquist identities (BL1)-(BL4). �

Remark 4.21. At every point of Kerrm,a \ A the vector fields V , W , ∂r, ∂ϑ form an orthogonal

basis of the tangent space. The vector field V is timelike on I ∪ III and spacelike on II. On I we

have 〈∂t,V〉 = (r2
+ a2)gtt + agtϕ = −∆ < 0, i.e. V is future-directed there. We choose the time

orientation on the Boyer-Lindquist block III for which V is future directed there too.

Definition 4.22. The region C := {p ∈ Kerrm,a | gϕϕ(p) < 0} ⊂ III is called the Carter time

machine.

Remark 4.23. On the equatorial hyperplane Eq we have

sin2 ϑ = 1 and thus

gϕϕ < 0⇐⇒ r2
+ a2
+

2mra2

r2
< 0⇐⇒ r4

+ a2r2
+ 2mra2 < 0.

The polynomial f (r) = r4
+ a2r2

+ 2ma2r has a simple root at

r = 0 and thus changes its sign at r = 0. Therefore f (r) < 0

for negative r close to 0. In particular, the subset C ⊂ III is

not empty.
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In a surface of constant t and ϕ, the Carter time machine can be pictured as follows (the radius

in the picture is an exponential function of r). We claim that for any two points p, q ∈ III we

0 r

A−

A+

C

Figure 86.. Carter time machine
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can find a future-directed timelike curve from p to q in III using the Carter time machine. In the

following we will construct such a curve.

Step 1: We find a curve from p to some point in C. To this end, we fix r < 0 such that

R × {r} × {σ ∈ S 2 |ϑ(σ) = π
2
} is contained in C. We write p = (t0, r0, σ0) ∈ R2 × S 2 \ Σ and

consider the functions

r1 : [0, 1] → (−∞, r−), r1(s) := sr + (1 − s)r0,

σ1 : [0, 1] → S 2, σ1(0) = σ0, ϑ(σ1(1)) = π
2
,

where σ1 is a shortest geodesic on S 2 from σ0 to the equator. It satisfies ϕ0 := ϕ◦σ1 = const and

(ϑ ◦ σ1)′ = const. Furthermore, let τ1: [0, 1] → R be the function satisfying τ′
1
(s) = r1(s)2

+ a2

and τ1(0) = 0. For a constant c1 ∈ R we consider the curve γ1: [0, 1] → Kerrm,a,

γ1(s) := (t0 + c1τ1(s), r1(s),Rc1asσ1(s))

where Rc1as is the rotation by the angle of c1as around the z-axis. In particular, we have

ϕ(Rc1asσ1(s)) = ϕ0 + c1as. It follows that

γ′1(s) = c1(r1(s)2
+ a2)∂t + r′1(s)∂r + (ϑ ◦ σ1)′(s)∂ϑ + c1a∂ϕ

= c1V + r′1(s)∂r + (ϑ ◦ σ1)′(s)∂ϑ

where V is one of the canonical vector fields. By Lemma 4.20 we have

〈γ′1(s), γ′1(s)〉 = −c2
1 ∆ρ

2

︸︷︷︸
≥c3

+ r′1(s)2 ρ2

∆
+ (ϑ ◦ σ1)′(s)2ρ2

︸                           ︷︷                           ︸
≤c2

where c2, c3 > 0 depend only on p and r. Therefore if c1 > ( c2

c3
)1/2 the curve γ1 is timelike.

Using Lemma 4.20 we obtain

〈γ′1(s),V〉 = c1〈V,V〉 = −c1∆ρ
2 < 0

and thus by our definition of time-orientation on III the curve γ1 is future-directed. We denote

its endpoint by

γ1(1) =: (t0 + c1τ1(1), r, u1) =: (t1, r, u1), ϑ(u1) = π
2
.

Remark 4.24. Had we chosen c1 < −( c2

c3
)1/2, we would have obtained a past-directed timelike

curve from p to some point in R × {r} × {σ ∈ S 2 |ϑ(σ) = π
2
}.

Step 2: Let t1, t2 ∈ R, u1, u2 ∈ S 2, ϑ(u1) = ϑ(u2) = π
2
. Given a constant c4 > 0 we define the

curve γ2: [0, 1] → III,

γ2(s) := (t1 + s(t2 − t1), r,R−c4su1).

We compute

γ′2(s) = (t2 − t1)∂t − c4∂ϕ.
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Thus if c4 is large enough, γ′
2

is timelike because ∂ϕ is timelike on C. Using the Boyer-Lindquist

identities (BL3) and (BL4) we obtain

〈γ′2(s),V〉 = 〈(t2 − t1)∂t − c4∂ϕ, (r
2
+ a2)∂t + a∂ϕ〉

= (t2 − t1)(r2
+ a2)gtt − c4agϕϕ + ((t2 − t1)a − c4(r2

+ a2))gtϕ

= −(t2 − t1)∆ − c4∆a sin2 ϑ

= −∆(c4a + t2 − t1).

If c4 is large enough this is negative and thus γ2 is a future-directed timelike curve from (t1, r, u1)

to (t2, r, ũ) where ũ is some point on the equator in S 2. By enlarging c4 further we can arrange

that ũ coincides with the given point u2.

Step 3: By Remark 4.24 there exists a past-directed timelike curve γ̂3: [0, 1] → III with γ̂3(0) =

q and γ̂3(1) = (t2, r, u2) for some t2 ∈ R, u2 ∈ S 2, ϑ(u2) = π
2
. We define γ3(s) := γ̂3(1 − s),

s ∈ [0, 1].

For any points p, q ∈ III we have therefore found a future-directed timelike curve from p to q.

In particular, we see that unlike in the Boyer-Lindquist blocks I and II there exist many closed

causal curves in III.

4.2.5. Extension across the horizons

Next we claim that we can extend the metric g(m,a) across the horizon H. To this end, we consider

the diffeomorphism

Kerrm,a → Kerrm,a, (t, r, σ) 7→ (t + ξ(r), r,Rη(r)σ) =: (t∗, r∗, σ∗)

where ξ, η: R \ {r−, r+} → R are functions such that

dξ

dr
=

r2
+ a2

∆(r)
,

dη

dr
=

a

∆(r)
.

and Rη(r) is the rotation by the angle η(r) around the z-axis. Note that on each of the intervals

(−∞, r−), (r−, r+), (r+,∞) the functions ξ and η are only defined up to an additive constant. It is

clear that the above map is a diffeomorphism since the inverse map is

(t∗, r∗σ∗) 7→ (t∗ − ξ(r∗), r∗,R−η(r∗)σ
∗) .

In other words, we consider the transformation of coordinates

t∗ = t + ξ(r), r∗ = r, ϑ∗ = ϑ, ϕ∗ = ϕ + η(r).

We compute the Kerr metric pulled back along this diffeomorphism, i.e. in the new coordinates

t∗, r∗, ϑ∗, ϕ∗. This coordinate system is known as Kerr coordinates.
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Lemma 4.25. In Kerr coordinates (t∗, r∗, ϑ∗, ϕ∗) on Kerrm,a \ A we have

g(m,a) = gtt(dt∗)2
+ ρ2(dϑ∗)2

+ gϕϕ(dϕ∗)2
+ 2dt∗dr∗ − 2a sin2 ϑdr∗dϕ∗ + 2gtϕdt∗dϕ∗.

Proof. By definition we have

dt∗ = dt + ξ′(r)dr = dt +
r2
+ a2

∆
dr, dr∗ = dr, dϑ∗ = dϑ, dϕ∗ = dϕ +

a

∆
dr.

It follows that

g(m,a) =gtt

(
dt∗ − r2

+ a2

∆
dr∗

)2
+ grr(dr∗)2

+ gϑϑ(dϑ∗)2
+ gϕϕ

(
dϕ∗ − a

∆
dr∗

)2

+ 2gtϕ

(
dt∗ − r2

+ a2

∆
dr∗

)(
dϕ∗ − a

∆
dr∗

)

=gtt(dt∗)2
+

(
gtt

(r2
+ a2

∆

)2
+
ρ2

∆
+ gϕϕ

a2

∆2
+ 2gtϕ

(r2
+ a2)a

∆2

)
(dr∗)2

+ ρ2(dϑ∗)2

+ gϕϕ(dϕ∗)2 − 2

(
gtt

r2
+ a2

∆
+ gtϕ

a

∆

)
dt∗dr∗ − 2

(
gϕϕ

a

∆
+ gtϕ

r2
+ a2

∆

)
dr∗dϕ∗

+ 2gtϕdt∗dϕ∗.

By the Boyer-Lindquist identities (BL3) and (BL4) the coefficient of (dr∗)2 is equal to

r2
+ a2

∆2
(−∆) +

a

∆2
∆a sin2 ϑ +

ρ2

∆
=
−r2 − a2

+ a2 sin2 ϑ

∆
+
ρ2

∆
= 0.

By (BL4) the coefficient of dt∗dr∗ is equal to 2 and by (BL3) the coefficient of dr∗dϕ∗ is equal

to −2a sin2 ϑ. This completes the proof. �

The term dr2 has disappeared in these new coordinates. All coefficient functions in this formula

for the metric are smooth even on H since the denominator ∆ is no longer present. Thus we

obtain a smooth extension of g(m,a) as a (0, 2)-tensor field on Kerrm,a ∪ (H \ A).

In order to show that this extension has Lorentzian signature, we express the volume form in the

new coordinates t∗, r∗, ϑ∗, ϕ∗. By Lemma 4.9 we have

vol =
√
| det g|dt ∧ dr ∧ dϑ ∧ dϕ

= ρ2| sin ϑ|(dt∗ − ξdr∗) ∧ dr ∧ dϑ ∧ (dϕ∗ − ηdr)

= ρ2| sin ϑ|dt∗ ∧ dr∗ ∧ dϑ∗ ∧ dϕ∗

and thus vol , 0 on H \ A. It follows that the extension of g(m,a) is non-degenerate on H \ A and

therefore must be Lorentzian on H \ A by continuity.
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In order to show that we also obtain an extension to H ∩ A, we first note that on S 2 \ {(0, 0,±1)}
we have gS 2 = dϑ2

+ sin2 ϑdϕ2. Thus on H \ A we obtain

g(m,a) = gtt(dt∗)2
+ ρ2gS 2 + (−ρ2 sin2 ϑ + gϕϕ)(dϕ∗)2

+ 2dt∗dr∗ − 2a(sin2 ϑdϕ∗)dr∗

− 4mra

ρ2
(sin2 ϑdϕ∗)dt∗.

For the third term on the right hand side we obtain

(
(r2
+ a2 − ρ2) sin2 ϑ +

2mra2

ρ2
sin4 ϑ

)
(dϕ∗)2

=

(
a2
+

2mra2

ρ2

)
(sin2 ϑdϕ∗)2.

By (7) the 1-form sin2 ϑdϕ∗ extends smoothly to A and thus we have obtained a smooth extension

of g(m,a) to H ∩ A as a (0, 2)-tensor field. On H ∩ A we have

g(m,a) = gtt(dt∗)2
+ ρ2gS 2 + 2dt∗dr∗.

Thus since

det


gtt 1

1 0

 = −1

and ρ2gS 2 is Riemannian the extension of g(m,a) is Lorentzian on H ∩ A. Therefore we have

extended the Lorentzian metric g(m,a) to

Kerr∗m,a := Kerrm,a ∪ H = (R2 × S 2) \ Σ.

Next we examine the geometry of the horizon H.

(1) The manifolds H± = R × {r±} × S 2 are diffeomorphic to R × S 2.

(2) The induced metric on H± \ A in the coordinates t∗, ϑ∗, ϕ∗ has determinant

det



gtt 0 gtϕ

0 ρ2 0

gtϕ 0 gϕϕ


= ρ2 det


gtt gtϕ

gtϕ gϕϕ

 = −∆ρ
2 sin2 ϑ = 0

where we have used Lemma 4.9. Since the metric is continuous this holds on all of H± and thus

H± are lightlike hypersurfaces of Kerr∗m,a.

(3) We claim that H± are totally geodesic hypersurfaces of Kerr∗m,a. Before we come to the proof

we first recall that the canonical vector field V = (r2
+ a2)∂t + a∂ϕ is defined on Kerrm,a. We

express V in the coordinates t∗, r∗, ϑ∗, ϕ∗:

dt∗(V) =

(
dt +

r2
+ a2

∆
dr

)
((r2
+ a2)∂t + a∂ϕ) = r2

+ a2,

dϕ∗(V) =
(
dϕ +

a

∆
dr

)
((r2
+ a2)∂t + a∂ϕ) = a,

dr∗(V) = dr(V) = 0,

dϑ∗(V) = ϑ(V) = 0,
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hence

V = (r2
+ a2)∂t∗ + a∂ϕ∗ .

Thus V extends to a smooth vector field on Kerr∗m,a. By continuity, the formula

〈V,V〉 = −∆ρ2

from Lemma 4.20 holds on all of Kerr∗m,a. Therefore V is lightlike along H±. Since it is tangential

to H± this implies that it is also normal to H±. In other words, we have for p ∈ H±

TpH± = {X ∈ TpKerr∗m,a | 〈X,V〉 = 0}. (12)

Next we define the vector fields

V± := (r2
± + a2)∂t∗ + a∂ϕ∗ = (r2

± + a2)∂t + a∂ϕ

on Kerr∗m,a. Since ∂t and ∂ϕ are Killing vector fields on Kerrm,a so are V±. By continuity, V± are

Killing vector fields on all of Kerr∗m,a. Moreover, we have V± = V along H±.

Now we can prove that H± are totally geodesic hypersurfaces of Kerr∗m,a. To this end, let X, Y be

vector fields on Kerr∗m,a which are tangential to H± along H±. Then along H± we have

〈∇XY,V〉 = 〈∇XY,V±〉 = ∂X 〈Y,V±〉︸ ︷︷ ︸
≡0

−〈Y,∇XV±〉 = 〈X,∇YV±〉

where in the last step we have used that V± are Killing vector fields. By exchanging X and Y we

get

〈∇Y X,V±〉 = −〈X,∇YV±〉.
Since X, Y are tangential to H± the bracket [X, Y] is tangential to H± along H± and thus

0 = 〈[X, Y],V±〉 = 〈∇XY − ∇Y X,V±〉 = 2〈X,∇YV±〉 = 2〈∇XY,V±〉.

By (12) it follows that ∇XY is tangential to H±. Thus H± are totally geodesic hypersurfaces of

Kerr∗m,a.

(4) We claim that the integral curves of V along H± are pregeodesics. Namely let γ: J → Kerr∗m,a
be a geodesic with γ(0) ∈ H± and γ′(0) = V(γ(0)). Then γ′(0) is lightlike and since γ is a

geodesic we know that γ′(s) is lightlike for all s ∈ J. Since H± are totally geodesic hypersurfaces

the geodesic γ does not leave H±, i.e. we have γ′(s) ∈ Tγ(s)H± for all s ∈ J. By Lemma 1.12, all

vectors in any tangent space TpH \ R · V(p) are spacelike. Thus there exists a smooth function

α: J → R such that γ′(s) = α(s)V(γ(s)) for all s ∈ J. Hence the integral curve of V through γ(0)

is a reparametrization of the geodesic γ.

Next we define a time orientation on Kerr∗m,a. We have already defined a time orientation on the

Boyer-Lindquist blocks I and III such that V is future directed. In the following we want to

use the coordinate vector field ∂r∗ to define a time orientation on Kerr∗m,a. The vector field ∂r∗ is

defined on all of Kerr∗m,a. By Lemma 4.25 it is lightlike and we have

〈∂r∗ ,V〉 = (r2
+ a2)〈∂r∗ , ∂t∗〉 + a〈∂r∗ , ∂ϕ∗〉 = (r2

+ a2) − a2 sin2 ϑ = ρ2 > 0.



4.2. Rotating black holes - the Kerr solution 115

t∗

r∗r±
ϕ∗

−∂r∗ V

Figure 87.. Future time cones along the horizons

Therefore ∂r∗ is past directed on I ∪ III and we define a time orientation on Kerr∗m,a by requiring

that ∂r∗ should be past directed everywhere. We can imagine the future timecones along H± to be

directed towards the inner side of H±. Thus if α: J → Kerr∗m,a is a future-directed timelike curve

with α(s0) ∈ H±, then (r∗ ◦ α)′(s0) = dr∗(α′(s0)) < 0. The same holds true for future-directed

lightlike curves α provided that α′(s0) < R ·V(α(s0)). This means that massive particles can pass

through the horizon from block I to block II or from block II to block III but not in the reverse

direction and that photons either stay on the horizon or behave in the same way.

Remark 4.26. The boundaries of the ergospheres E ⊂ I and E′ ⊂ III are submanifolds of

Kerr∗m,a. By Lemma 4.16 we know that ∂E\A and ∂E′\A are timelike hypersurfaces of Kerr∗m,a\A.

For p ∈ ∂E∩ A we see that Tp∂E = TpH is lightlike and similarly for p ∈ ∂E′ ∩ A. We conclude

that massive particles or photons coming from I or III can enter the ergospheres and leave it.

4.2.6. The Christoffel symbols

For the study of geodesics we need to understand the Levi-Civita connection of the Kerr metric,

in other words, we have to know the Christoffel symbols. Here they are in Boyer-Lindquist

coordinates.

Proposition 4.27. The Christoffel symbols of g(m,a) in Boyer-Lindquist coordinates are given

by

(a) Γr
tt = −

∆m(ρ2−2r2)

ρ6 , Γϑtt = − 2mra2 sin ϑ cosϑ
ρ6 , Γt

tt = Γ
ϕ
tt = 0,

(b) Γr
ϕϕ = − ∆ρ2

(
r +

ma2 sin2 ϑ(ρ2−2r2)

ρ4

)
sin2 ϑ, Γt

ϕϕ = Γ
ϕ
ϕϕ = 0,

Γ
ϑ
ϕϕ = − sin ϑ cos ϑ

ρ2

(
r2
+ a2
+

2mra2 sin2 ϑ(2ρ2
+a2 sin2 ϑ)

ρ4

)
,

(c) Γr
tϕ = Γ

r
ϕt =

∆ma sin2 ϑ(ρ2−2r2)

ρ6 , Γϑtϕ = Γ
ϑ
ϕt =

2mra sin ϑ cos ϑ(r2
+a2)

ρ6 , Γt
tϕ = Γ

t
ϕt = Γ

ϕ
tϕ = Γ

ϕ
ϕt = 0,

(d) Γt
rr = Γ

ϕ
rr = Γ

t
rϑ = Γ

ϕ
rϑ
= Γ

t
ϑr
= Γ

ϕ
ϑr
= Γ

t
ϑϑ = Γ

ϕ
ϑϑ
= 0, Γr

rr =
r
ρ2 +

m−r
∆

, Γϑrr =
a2 sin ϑ cos ϑ
∆ρ2 ,

Γ
r
ϑϑ = −

∆r
ρ2 , Γϑ

ϑϑ
= − a2 sin ϑ cosϑ

ρ2 , Γr
rϑ = Γ

r
ϑr
= − a2 sinϑ cos ϑ

ρ2 , Γϑ
rϑ
= Γ

ϑ
ϑr
=

r
ρ2 ,

(e) Γr
rt = Γ

r
tr = Γ

r
ϑt
= Γ

r
tϑ = 0,
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(f) Γr
rϕ = Γ

r
ϕr = Γ

r
ϑϕ = Γ

r
ϕϑ = 0, Γ

ϕ
tr = Γ

ϕ
rt =

ma(2r2−ρ2)

∆ρ4 , Γ
t
tr = Γ

t
rt =

m(r2
+a2)(2r2−ρ2)

∆ρ4 ,

Γ
t
ϕr = Γ

t
rϕ =

ma sin2 ϑ
∆ρ4 ((r2

+ a2)(ρ2 − 2r2) − 2r2ρ2), Γ
ϕ
ϕr = Γ

ϕ
rϕ =

rρ4
+ma2ρ2 sin2 ϑ−2mr2(r2

+a2)

∆ρ4 ,

(g) Γϑrt = Γ
ϑ
tr = Γ

ϑ
ϑt
= Γ

ϑ
tϑ
= 0,

(h) Γϑrϕ = Γ
ϑ
ϕr = Γ

ϑ
ϑϕ
= Γ

ϑ
ϕϑ
= 0, Γ

ϕ
tϑ
= Γ

ϕ
ϑt
= − 2mra cos ϑ

ρ4 sin ϑ
, Γt

tϑ
= Γ

t
ϑt
= − 2mra2 sin ϑ cos ϑ

ρ4 ,

Γ
ϕ
ϑϕ
= Γ

ϕ
ϕϑ
=

cosϑ
sinϑ

(
1 + 2mra2 sin2 ϑ

ρ4

)
, Γt

ϑϕ
= Γ

t
ϕϑ
=

2mra3 sin3 ϑ cos ϑ
ρ4 .

Proof. This is a straighforward but lengthy and tedious computation best left to SageMath, see

Section B.2.3. �

Definition 4.28. A future directed timelike curve of the form α(s) = (t(s), r0, σ0) which is

parametrized by proper time is called a Kerr observer.

Remark 4.29. For a Kerr observer we have

−1 = 〈α′, α′〉 = t′(s)2gtt = t′(s)2
(
− 1 +

2mr0

ρ2
0

)

with ρ0 := ρ(r0, σ0). Thus for sufficiently large r0 we get t′(s) = (1 − 2mr0

ρ2
0

)−1/2. It follows that

α(s) =

(
s0 +

(
1 − 2mr0

ρ2
0

)−1/2
s, r0, σ0

)

and hence

α′ =
(
1 − 2mr0

ρ2
0

)−1/2

∂t.

Putting ∆0 := ∆(r0) and using Proposition 4.27 (a) we find for the covariant derivative

∇
ds
α′(s) = ∇(1−2mr0/ρ

2
0
)−1/2∂t

[(
1 − 2mr0

ρ2
0

)−1/2
∂t

]

=

(
1 − 2mr0

ρ2
0

)−1

∇∂t
∂t

=

(
1 − 2mr0

ρ2
0

)−1

(Γt
tt∂t + Γ

r
tt∂r + Γ

ϑ
tt∂ϑ + Γ

ϕ
tt∂ϕ)

=

(
1 − 2mr0

ρ2
0

)−1(∆0m

ρ4
0

(
− 1 +

2r2
0

ρ2
0

)
∂r −

2mr0a2 sinϑ cos ϑ

ρ6
0

∂ϑ

)
.
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As r0 → ∞ we have ρ2
0
∼ r2

0
and ∆0 ∼ r2

0
(in the sense that the quotient tend to 1) and thus

∇
ds
α′(s) ∼ m

r2
0

∂r −
2ma2 sinϑ cos ϑ

r5
0

∂ϑ.

For large r0 a Kerr observer has to use a force approximately proportional to m

r2
0

in order to keep

his r-coordinate constant. This coincides with the prediction of Newton’s theory of the gravita-

tional force exerted on the observer by a body of mass m. This justifies to call the parameter m

the mass of the black hole.

4.2.7. Geodesics

Our next aim is to examine geodesics in Kerr∗m,a. More precisely, we will derive 4 quantities

which are conserved along geodesics and which will help to reduce the geodesic equation to a

system of 4 differential equations of first order. Let γ: J → Kerr∗m,a be a geodesic. It follows

immediately that

q := 〈γ′, γ′〉

is constant on J. The number q is called the causal constant of γ since its sign indicates the

causal type of γ. Moreover

E := −〈γ′, ∂t〉

is constant on J since ∂t = ∂t∗ is a Killing vector field. If γ is timelike, E can be interpreted

as the energy of γ as measured by a Kerr observer (provided the r-coordinate is large enough).

The minus sign is a convention which ensures that γ has positive energy if it is future-directed.

Furthermore,

L := 〈γ′, ∂ϕ〉

is constant on J since ∂ϕ = ∂ϕ∗ is a Killing vector field. If γ is timelike, L can be interpreted as

the angular momentum of γ as measured by a Kerr observer.

There is one further conserved quantity but it is not induced by a Killing vector field. In order to

find it we first generalize the concept of Killing fields.

Definition 4.30. A (0, k)-tensor K is called totally symmetric if

K(X1, . . . , Xk) = K(Xσ(1), . . . , Xσ(k))

for any permutation σ ∈ S k.

For k = 1 this is a void condition while for k = 2 this is the condition of a bilinear form being

symmetric.
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Definition 4.31. A totally symmetric tensor field K on a semi-Riemannian manifold is called

a Killing tensor field if

(∇XK)(X, . . . , X) = 0

for all tangent vectors X.

Example 4.32. (1) Let Y be a Killing vector field and let K be the corresponding 1-form, i.e.

K(X) = 〈Y, X〉
for all tangent vectors X. Then K is a Killing tensor field. Indeed, for any vector field X we find

(∇XK)(X) = ∂X(K(X)) − K(∇XX)

= ∂X〈Y, X〉 − 〈Y,∇XX〉
= 〈∇XY, X〉 = 0.

This example can be generalized, see Exercise 4.21.

(2) Each semi-Riemannian manifold has a canonical Killing (0, 2)-tensor field, namely the met-

ric g itself. It is symmetric and is even parallel, ∇g = 0. In particular, it is a Killing tensor

field.

Killing tensor fields lead to quantities which are conserved along geodesics. This makes them

interesting for us.

Lemma 4.33. Let K be a Killing tensor field on a semi-Riemannian manifold M and let γ be

a geodesic in M. Then the function

s 7→ K(γ′(s), . . . , γ′(s))

is constant.

Proof. We differentiate:

d
ds

K(γ′(s), . . . , γ′(s))

= (∇γ′(s)K)(γ′(s), . . . , γ′(s)) + K
( ∇

ds
γ′(s), γ′(s), . . . , γ′(s)

)
+ . . . + K

(
γ′(s), . . . , γ′(s), ∇

ds
γ′(s)

)

= 0

where the first term vanishes because K is a Killing tensor field and the others because γ is a

geodesic. �

In order to apply this, we construct a Killing (0, 2)-tensor field on Kerrm,a. We recall the canon-

ical vector field V defined in Definition 4.19 and we put

L± := 1
∆

V ± ∂r.
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Using Lemma 4.20 we see that the vector fields L+ and L− are lightlike:

〈L±, L±〉 = 1
∆2 〈V,V〉 + grr = − ρ

2

∆
+ grr = 0.

We define a symmetric (0, 2)-tensor field K on Kerrm,a by

K(X1, X2) := ∆
2

(〈L+, X1〉〈L−, X2〉 + 〈L+, X2〉〈L−, X1〉
)
+ r2〈X1, X2〉.

Lemma 4.34. The symmetric (0, 2)-tensor field K on Kerrm,a is a Killing tensor field.

Proof. One computes ∇K and checks that for an arbitrary tangent vector X we find

(∇XK)(X, X) = 0, see the SageMath computation B.2.4. �

Lemma 4.35. For any X ∈ TKerrm,a we have

K(X, X) = −ρ
4dr(X)2

∆
+
〈X,V〉2
∆

+ r2〈X, X〉

= ρ4dϑ(X)2
+
〈X,W〉2

sin2 ϑ
− a2〈X, X〉 cos2 ϑ.

Proof. This can be checked by direct computation, see the SageMath computation B.2.5. �

Given a geodesic γ we define the auxiliary quantities

v := −〈γ′,V〉 = −〈γ′, (r2
+ a2)∂t + a∂ϕ〉 = (r2

+ a2)E − aL,

w := 〈γ′,W〉 = 〈γ′, ∂ϕ + a sin2 ϑ∂t〉 = −a sin2 ϑE + L.

Lemma 4.33 together with Lemma 4.35 with X = γ′ = t′∂t + r′∂r + ϑ
′∂ϑ + ϕ′∂ϕ yields

Corollary 4.36. For any geodesic γ in Kerrm,a the function

−ρ
4(r′)2

∆
+

v2

∆
+ r2q = ρ4(ϑ′)2

+
w2

sin2 ϑ
− a2q cos2 ϑ

is constant. �
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Definition 4.37. The constant

C := ρ4(ϑ′)2
+

w2

sin2 ϑ
− a2q cos2 ϑ

is called the Carter constant of γ.

We can now reduce the geodesic equations in Kerrm,a to a system of 4 equations of first order.

Theorem 4.38. Let γ: J → Kerrm,a be a geodesic. Then

ρ2t′ = aw +
(r2
+ a2)v

∆
, (13)

ρ2ϕ′ =
w

sin2 ϑ
+

av

∆
, (14)

ρ4(r′)2
= (r2q −C)∆ + v2, (15)

ρ4(ϑ′)2
= C − w2

sin2 ϑ
+ a2q cos2 ϑ. (16)

Proof. Equations (15) and (16) follow directly from Corollary 4.36 and the definition of the

Carter constant.

As to the other two equations, the Boyer-Lindquist identities (BL1)-(BL4) yield

〈∂t,V〉 = 〈∂t, (r
2
+ a2)∂t + a∂ϕ〉 = (r2

+ a2)gtt + agtϕ = −∆,
〈∂ϕ,V〉 = 〈∂ϕ,V〉 = (r2

+ a2)gϕt + agϕϕ = ∆a sin2 ϑ,

〈∂t,W〉 = 〈∂t, ∂ϕ + a sin2 ϑ∂t〉 = gtϕ + a sin2 ϑgtt = −a sin2 ϑ,

〈∂ϕ,W〉 = 〈∂ϕ, ∂ϕ + a sin2 ϑ∂t〉 = gϕϕ + a sin2 ϑgtϕ = (r2
+ a2) sin2 ϑ.

Thus we obtain

v = −t′〈∂t,V〉 − ϕ′〈∂ϕ,V〉 = t′∆ − ϕ′∆a sin2 ϑ,

w = t′〈∂t,W〉 + ϕ′〈∂ϕ,W〉 = −t′a sin2 ϑ + ϕ′(r2
+ a2) sin2 ϑ.

This implies

v

∆
= t′ − ϕ′a sin2 ϑ,

w

a sin2 ϑ
= −t′ + ϕ′

r2
+ a2

a
.

Solving for ϕ′ and t′ we find Equations (13) and (14). �

Remark 4.39. Let γ: J → Kerrm,a be a geodesic.
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(1) Let s0 ∈ J. Then γ is uniquely determined by γ(s0), q, E, L, C, sign(r′(s0)) and sign(ϑ′(s0))

as long as r′(s) , 0 and ϑ′(s) , 0.

(2) Let α ∈ R and consider the reparametrized geodesic γ̃(s) = γ(αs). Then γ̃ has the conserved

quantities q̃ = α2q, Ẽ = αE, L̃ = αL and C̃ = α2C.

(3) If γ is causal, then we have q ≤ 0 and hence C ≥ 0.

(4) We note that (15) and (16) do not involve functions of t and ϕ. Thus one can start by solving

the system of these two equations first. Then one knows ̺2 and the right hand sides of (13) and

(14) and one can get t and ϕ by a simple integration.

In the remainder of this section we restrict our attention for the sake of simplicity to geodesics

in the equatorial hyperplane Eq = {(t, r, σ) ∈ Kerrm,a |ϑ(σ) = π
2
}. Since Eq is a totally geodesic

hypersurface, every geodesic starting in Eq whose initial velocity vector is tangent to Eq will

remain in Eq. Since w = L − a sin2 ϑE we get by (16)

0 = ̺4(ϑ′)2
= C − w(π/2)2

= C − (L − aE)2

and hence

C = (L − aE)2.

Inserting this into (15) and using v = (r2
+ a2)E − aL we get

r4(r′)2
= (r2q − (L − aE)2)(r2

+ a2 − 2mr) + ((r2
+ a2)E − aL)2

= (q + E2)r4 − 2mqr3
+ (a2(q + E2) − L2)r2

+ 2m(L − aE)2r.

Thus we obtain (r′)2
+ U(r) = E2 where

U(r) :=
2mq

r
+

L2 − a2(q + E2)

r2
− 2m(L − aE)2

r3
− q

is the effective potential. We have U(r) ≤ E2 and thus for given E2 we can find out the possible

values of r using this inequality. Furthermore we have r′ = ±(E2 − U(r))1/2 and therefore

r′′ = ± 1
2
(E2 − U(r))−1/2(−U′(r))r′ = − 1

2
U′(r).

If for some r1 ∈ R we have E2
= U(r1) and U′(r1) , 0 then r1 is a turning point for the radial

motion of the geodesic. Namely a geodesic with energy E2
= U(r1) reaches r = r1 at a finite

parameter value s1 ∈ J and we have r′(s1) = 0 and r′′(s1) , 0, i.e. the radial motion changes its

direction.

Let us now discuss the function ϕ, i.e. the angular motion of the geodesic. We consider lightlike

geodesics, i.e. q = 0, and we assume that E > 0 which for large r means that γ is future-directed.

We also assume that L , 0 and L , aE.

We start by studying turning points of the angular motion. These are points where the geodesic

changes its direction of rotation. We define

rw :=
2m(L − aE)

L
, 0.
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We claim that if we are away from the horizons, i.e. rw < {r+, r−}, then the geodesic has a turning

point of the angular motion whenever its radial coordinate is r = rw. Furthermore there are no

other turning points for the angular motion.

Note that in a Schwarzschild spacetime rw = r+ = 2m, so Schwarzschild is excluded here. This

is not surprising because we already know from the detailed discussion in Section 4.1 that in a

Schwarzschild spacetime geodesics do not reverse their angular motion.

In order to understand turning points, we first look for all possible such points by taking ϕ′ = 0.

By (14) we get

0 = ∆r2ϕ′

= ∆(L − aE) + av

= (r2
+ a2 − 2mr)(L − aE) + a((r2

+ a2)E − aL)

= Lr2 − 2m(L − aE)r. (17)

Since r , 0 the only possible turning point for the angular motion occurs at r = rw. By (14) we

have

r2ϕ′ = L − aE +
av(r)

∆(r)
=: f (r).

We take the derivative with respect to s and we get

r2ϕ′′ + 2rr′ϕ′ =
d f

dr
r′.

We multiply by r2 and we obtain

r4ϕ′′ =
(
d f

dr
− 2 f (r)

r

)
r2r′ .

We take the square of both sides and we use equation (15) to get

(r4ϕ′′)2
=

(
d f

dr
− 2 f (r)

r

)2

(−(L − aE)2
∆ + v2).

At r = rw we have

∆(rw) =
a2L2 − 4m2aE(L − aE)

L2

v(rw)2
= (L − aE)2

(
16m4E2(L − aE)2

L4
+ a2 − 8m2aE(L − aE)

L2

)

d f

dr
(rw) =

2mL2(L − aE)

a2L2 − 4m2aE(L − aE)

and thus

(r4ϕ′′)2|r=rw
=

16m4E(L − aE)5

a(a2L2 − 4m2aE(L − aE))
.

Since

(rw − r+)(rw − r−) =
a2L2 − 4m2aE(L − aE)

L2
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we get

(r4ϕ′′)2|r=rw
=

16m4E(L − aE)5

aL2(rw − r+)(rw − r−)
.

Since by hypothesis we have rw < {0, r+, r−} we get ϕ′′ , 0 at r = rw. Thus at rw there is the

unique point where the geodesic changes its circling direction around the black hole.

Next we examine the angular motion as the geodesic approaches the horizons H± = {r = r±}.
We claim that if rw < {r+, r−} then ϕ(s) is unbounded as r → r±, i.e. the geodesic circles around

the horizon infinitely many times.

In order to prove this we first note that we may assume v(r+) , 0 and v(r−) , 0. Namely, if

v(r+) = 0 then since ∆(r+) = 0 we have (L − aE)∆(r+) + av(r+) = 0 and thus by (17) we get

r+ = rw contradicting our hypothesis. Thus v(r+) , 0 and the same argument shows v(r−) , 0.

Let γ: [s0, s1) → Kerrm,a be a geodesic such that r(s) → r1 as s→ s1 where r1 = r+ or r1 = r−.

We consider

lim
s→s1

ϕ(s) − ϕ(s0) =

∫ s1

s0

ϕ′(s)ds =

∫ s1

s0

(
L − aE +

av(r)

∆(r)

)ds

r2

where we have used equation (14). For s close to s1 we have r(s) ≥ c1r1 for some c1 > 0. Thus

we have ∣∣∣∣
∫ s1

s0

L − aE

r2
ds

∣∣∣∣ < ∞.

We take r as the new integration variable, we define r0 := r(s0) and we use equation (15) to get

∫ s1

s0

av(r)

∆(r)

ds

r2
= a

∫ r1

r0

v(r)

∆(r)

dr

r2r′
= ±a

∫ r1

r0

v

∆
(v2 − (L − aE)2

∆)−1/2 dr

= ±a

∫ r1

r0

1

(r − r+)(r − r−)
(1 − (L − aE)2v−2

∆)−1/2

︸                         ︷︷                         ︸
=:D

dr.

Since v(r1) , 0 and ∆(r1) = 0 we have D→ 1 as s→ s1. It follows that there exists c2 > 0 such

that ∣∣∣∣
∫ s1

s0

av(r)

∆(r)

ds

r2

∣∣∣∣ ≥ c2

∣∣∣∣
∫ r1

r0

dr

(r − r+)(r − r−)

∣∣∣∣.

If r+ , r− there is c3 > 0 such that 1
(r−r−)(r−r+)

≥ c3
1

r−r1
. Thus in both cases r+ = r− and r+ , r−

this integral does not converge since the integrals

∫ r1

r0

dr

r − r1
,

∫ r1

r0

dr

(r − r1)2

do not converge. Thus ϕ(s) is unbounded as s→ s1.

Next we consider geodesics approaching the ring singularity Σ = {r = 0} ∩ Eq. We claim that

ϕ(s) converges as r → 0. In order to prove this we write as above

lim
s→s1

ϕ(s) − ϕ(s0) =

∫ s1

s0

ϕ′(s)ds =

∫ s1

s0

(
L − aE +

av(r)

∆(r)

)ds

r2
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Figure 88. In this and the following orbit

plots, the radial coordinate r is drawn in

an exponential scale to accommodate neg-

ative values of r, too. In particular, the

ring singularity Σ corresponds to the red

circle of radius 1 in these diagrams. This

plot shows a lightlike geodesic in Boyer-

Lindquist block II spiraling to the inner

and outer horizons drawn in black. Note

the reversal of circling direction. The val-

ues are m = 1.5, a = 1, L = 6, and E = 2.

where we have used equation (14). As above we take r as the new integration variable, we define

r0 := r(s0) and we use equation (15) to get

∫ s1

s0

(
L − aE +

av(r)

∆(r)

)ds

r2
= ±

∫ 0

r0

(
L − aE +

av(r)

∆(r)

)
(v(r)2 − (L − aE)2

∆(r))−1/2 dr.

We have

L − aE +
av(r)

∆(r)
=

Lr2 − 2m(L − aE)r

r2 + a2 − 2mr

and

(v(r)2 − (L − aE)2
∆(r))−1/2

= (E2r4 − (L − aE)(L + aE)r2
+ 2mr(L − aE)2)−1/2.

Thus the integrand is asymptotic to r1/2 as r → 0 and the integral converges.

Figure 89. Lightlike geodesic falling into

the ring singularity (red) and spiraling to

the inner horizon (black). The values are

m = a = 1, L = 2, and E = 1.

Next we discuss the function r, i.e. the radial motion of the geodesic. As before, we consider

lightlike geodesics, i.e. q = 0, and we assume that E > 0. The effective potential defined above
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becomes

U(r) =
L2 − a2E2

r2
− 2m(L − aE)2

r3
.

If L , aE we have

lim
rց0

U(r) = −∞, lim
rր0

U(r) = ∞, lim
r→±∞

U(r) = 0.

If L < {±aE} we have

U(r) = 0⇔ r(L2 − a2E2) = 2m(L − aE)2 ⇔ r =
2m(L − aE)

L + aE

and

dU

dr
= 0⇔ −2

L2 − a2E2

r3
+ 3

2m(L − aE)2

r4
= 0

⇔ 2(L2 − a2E2)r = 6m(L − aE)2

⇔ r =
3m(L − aE)

L + aE
=: rext.

We compute

U(rext) =
(L2 − a2E2)(L + aE)2

(3m(L − aE))2
− 2m(L − aE)2(L + aE)3

(3m(L − aE))3

=
(L + aE)3

9m2(L − aE)
− 2(L + aE)3

27m2(L − aE)

=
1

27m2

(L + aE)3

L − aE
.

(1) Case L > aE. Then rext > 0, U(rext) > 0 and rext is a local maximum of the function U.

(a) Subcase E2 > U(rext) =
1

27m2

(L+aE)3

L−aE
.
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Figure 90. The effective potential

U(r) for m = 2, a = 1, L = 10, and

E = 2. The red line shows the energy

threshold at E2.

For r > 0 we have

(r′)2
= E2 − U(r) ≥ E2 − U(rext) > 0
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and thus |r′(s)| ≥ (E2 − U(rext))
1/2 for all s where the right hand side is a constant independent

of s. Thus ingoing geodesics hit the ring singularity at a finite value of s and outgoing geodesics

escape to infinity. We call this motion a collision-escape orbit.

As to negative r, there is a unique value r1 < 0 such that U(r1) = E2. Moreover U′(r1) , 0, i.e.

r1 is a turning point for the radial motion. Thus for r < 0 the function r cannot take values in

(r1, 0) and geodesics hitting r = r1 turn around and escape to −∞. We call this motion a fly-by

orbit.

(b) Subcase E2
= U(rext).

Figure 91. The effective potential

U(r) for m = a = 1, L = 2, and

E = 1. The red line shows the en-

ergy threshold at E2.
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(i) r(0) > rext: Outgoing geodesics escape to infinity, ingoing ones satisfy r(s) → rext as

s→ ∞.

Figure 92. Lightlike geodesic spiral-

ing to the horizon and escaping to in-

finity. The values are m = a = 1,

L = 2, and E = 1.

(ii) r(0) = rext: We see that the functions ϑ ≡ π
2
, r ≡ rext and

t(s) = t0 + s
1

r2
ext

(
a(L − aE) +

(r2
ext + a2)v(rext)

∆(rext)

)

ϕ(s) = ϕ0 + s
1

r2
ext

(
L − aE +

av(rext)

∆(rext)

)
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solve the equations (13)-(16) provided that rext < {r+, r−}. This geodesic describes a photon

circling around the black hole with constant angular velocity and at a constant distance.

Note that for fixed m and a the distance rext =
3m(L−aE)

L+aE
can take all values in (0, 3m) for

suitable choices of L and E satisfying L > aE. Hence, there is a whole photon annular

region in contrast to the Schwarzschild model with its photon sphere.

(iii) 0 < r(0) < rext: Outgoing geodesics satisfy r(s) → rext as s → ∞, ingoing geodesics hit

the ring singularity.

(iv) r(0) < 0: The discussion for negative r is as in case a) and leads to a fly-by orbit.

Figure 93. Lightlike fly-by orbit in block

III. The values are m = a = 1, L = 2, and

E = 1. Note that the origin corresponds to

r = −∞.

(c) Subcase E2 < U(rext).

(i) r(0) > rext: fly-by orbit

(ii) 0 < r(0) < rext: collision orbit

(iii) r(0) < 0: fly-by orbit

(2) Case L = aE: Then U ≡ 0 and thus |r′| is constant. In both cases r(0) < 0 and r(0) > 0 we

obtain a collision-escape orbit.

(3) Case −aE < L < aE: Then rext < 0, U(rext) < 0 and rext is a local minimum of the function

U. For r > 0 we have (r′)2
= E2 −U(r) ≥ E2 and thus |r′(s)| ≥ E independently of s. We obtain

a collision-escape orbit. There is exactly one r1 such that U(r1) = E2 and we have r1 < 0. Thus

the function r cannot take values in (r1, 0) and for r(0) ≤ r1 we get a fly-by orbit.

(4) Case L = −aE: Then U(r) = − 8ma2E2

r3 has no local extrema. Apart from that the discussion

is analogous to the case −aE < L < aE.

(5) Case L < −aE: Then rext > 0, U(rext) > 0 and rext is a local maximum of the function U.

The discussion is analogous to the case L > aE.

The discussion of geodesics in many other cases can be found in O’Neill’s book [8].

4.2.8. The Kerr metric is a vacuum solution

The Kerr metric g(m,a) is indeed a solution to the vacuum Einstein field equations.
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Proposition 4.40. The Ricci curvature of the Kerr metric g(m,a) vanishes.

The proof is a straighforward but lengthy and tedious computation. Fortunately, it can be dele-

gated to SageMath, see Section B.2.6.

4.3. Exercises

4.1. Let M be the Schwarzschild spacetime with mass m ≥ 0. At each point p let Z ⊂ TpM be

the plane spanned by ∂
∂t

and ∂
∂r

. Show that the sectional curvature of a plane E ⊂ TpM satisfies:

K(E) =


2m
r3 , if E is tangential to S 2 or if E = Z;

−m
r3 , if E is spanned by a vector tangential to S 2 and by one in Z.

4.2. In a Schwarzschild spacetime with m > 0 there are photons circling at constant

Schwarzschild distance r = 3m around the black hole. Compute the corresponding lightlike

geodesics.

4.3. Let γ be the wordline of a freely falling material particle in Schwarzschild spacetime M

with m > 0 which falls into the horizon from the outside. In other words, γ : [0, T ) → M is

a timelike geodesic with γ(s) = (t(s), r(s), θ(s), ϕ(s)) where r(s) > 2m and lims→T r(s) = 2m.

Show:

(a) T < ∞, i.e. the particle reaches the horizon in finite proper time.

(b) lims→T t(s) = ∞, i.e. measured in Schwarzschild time, the particle needs infinite time to

reach the horizon.

4.4. Fix r0 > 2m > 0 and consider the hypersurface Hr0
= {r = r0} in the Schwarzschild

spacetime for mass m. Show that Hr0
is totally umbilic if and only if r0 = 3m.

Here totally umbilic means that the Weingarten map of the hypersurface is a multiple of the

identity, i.e. ∇Xν = λX for all X tangent to the hypersurface where λ is a constant and ν is a unit

normal field along the hypersurface.

4.5. Compute the Schwarzschild radius of the earth (mass 5.9723·1024 kg), of the moon (7.349·
1022 kg) and of the sun (1.9884 · 1030 kg).

4.6. (a) Show that the projection of any causal curve in Kr × S 2 to Kr is causal in Kr.

(b) Show that every causal curve in Kr × S 2 can pass the event horizon at most twice.

4.7. (a) Show that for each s ∈ R the map Φs : Kr→ Kr, (u, v) 7→ (e−su, esv), is an isometry of

the Kruskal plane.

(b) Compute the corresponding Killing vector field and express it in the Schwarzschild frame



4.3. Exercises 129

∂
∂t

and ∂
∂r

.

4.8. Show that in Boyer-Lindquist coordinates the Kerr metric can be written as

g(m,a) =
ρ2

∆
dr⊗dr+ρ2gS 2 +a2 sin4 θ dφ⊗dφ−dt⊗dt+

2mr

ρ2
(dt−a sin2 θ dφ)⊗ (dt−a sin2 θ dφ)

on R × R × S 2 \ (Σ ∪ H ∪ A).

4.9. Let Φ,Ψ : R2 × S 2 \ (Σ ∪ H)→ R2 × S 2 \ (Σ ∪ H) be given by

Φ(t, r, σ) = (−t, r, σ),

Ψ(t, r, σ) = (t, r, S(σ)),

where S : S 2 → S 2 denotes the reflection about a plane which contains the north and the south

poles (0, 0,±1). Show:

Φ
∗g(m,a) = Ψ

∗g(m,a) = g(m,−a),

where we now allow all a ∈ R.

4.10. Let α : (s0, s1) → I be a future-directed causal curve which is contained in A and which

falls into the outer horizon, more precisely, r(α(s)) → r+ and (r ◦ α)′(s)→ r∗ , 0 for sր s1.

Show that (t ◦ α)′ → ∞ as sր s1.

4.11. We know that for the slowly rotating Kerr solution, the region I does not contain any

closed causal curves but III does. Does the rapidly rotating Kerr solution have closed causal

curves?

4.12. Let a < m and let α : J → I be a future-directed timelike curve, parametrized by proper

time. Show that

(t ◦ α)′(s) ≥
(
1 − 2m2

r(α(s))2 + a2

)−1/2

for all s ∈ J.

4.13. Show that the Carter time machine C is connected.

Hint: Show that the polynomial in r which characterizes C along a ray ϑ ≡ ϑ0 has only one real

root for any ϑ0.

4.14. Express the coordinate vector fields for the Kerr coordinates by those for the Boyer-

Lindquist coordinates and vice versa.

4.15. Let α : (−1, 1) → Kerr∗m,a be a smooth causal curve with α(0) ∈ H and α′(0) = V(α(0)).

Show:
d
ds

(r∗ ◦ α)
∣∣∣
s=0
=

d2

ds2 (r∗ ◦ α)
∣∣∣
s=0
= 0.
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4.16. Let p ∈ Kerr∗(m,a). Show that p ∈ I if and only if there exists a future-directed timelike

curve α : [0,∞)→ Kerr∗(m,a) with α(0) = p and lims→∞ r(α(s)) = ∞.

4.17. Show that the r-coordinate lines (w.r.t. Boyer-Lindquist coordinates) in the equatorial

hypersurface Eq are pregeodesics, both as curves in Eq and as curves in Kerrm,a.

4.18. Let a < m and let X be the vector field X = a∂t + β∂ϕ on block I for some constant β. Let

r0 > r+.

(a) Show r3
0
> ma2.

(b) Determine β such that the integral curves of X at r = r0 and ϑ = π
2

are geodesics.

(c) Show that X is timelike for these β and for sufficiently large r0.

Remark: We have found world lines of massive particles which circle at distance r0 around the

black hole.

4.19. Let M be a semi-Riemannian manifold and let Ψ : [0, ε0) × M → M be a smooth map

such that each Ψε := Ψ(ε, ·) : M → M is an isometry and Ψ0 = id. Let X := d
dεΨε|ε=0 be the

corresponding Killing vector field.

Show that X is a Jacobi field along each geodesic.

4.20. Show that the Kerr-Metrik gm,a cannot be extended across the ring singularity Σ.

Hint: Use SageMath to compute the Kretschmann scalar curvature.

4.21. Let Y1, . . . , Yk be Killing vector fields on a semi-Riemannian manifold. Show that

K(X1, . . . , Xk) =
∑

σ∈S k

〈Y1, Xσ(1)〉 · · · 〈Yk, Xσ(k)〉

defines a Killing tensor field.
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We want to consider small perturbations of a given solution to the Einstein field equations. These

fluctuations are described well by solutions of the linearized field equations. In order to linearize

the field equations at a given solution we consider the first variation of the relevant geometric

quantities.

5.1. First variation of geometric quantities

Let (M, g) be a semi-Riemannian manifold and let (gs)s∈(−ε,ε) be a smooth 1-parameter family of

metrics with g0 = g. Then h := ∂
∂s
|s=0gs is a (0, 2)-tensor field on M. Let ∇s be the Levi-Civita

connection of gs. Then ∇s − ∇0 is a (1, 2)-tensor field on M and thus

lim
s→0

1

s
(∇s − ∇0) =: ∇′

is also a (1, 2)-tensor field on M. We denote by ∇ := ∇0 the Levi-Civita connection of g. Then

∇′ is characterized by the following formula.

Lemma 5.1. For all X, Y, Z ∈ TpM, p ∈ M, we have

g(∇′(X, Y), Z) = 1
2
{(∇Xh)(Y, Z) + (∇Y h)(X, Z) − (∇Zh)(X, Y)}.

Proof. We differentiate the Koszul formula

gs(∇s
XY, Z) = 1

2
{∂Xgs(Y, Z) + ∂Ygs(X, Z) − ∂Zgs(X, Y)

− gs(X, [Y, Z]) + gs(Y, [Z, X]) + gs(Z, [X, Y])}

with respect to s at s = 0 and we get

h(∇XY, Z) + g(∇′(X, Y), Z) = 1
2
{∂Xh(Y, Z) + ∂Yh(X, Z) − ∂Zh(X, Y)

− h(X, [Y, Z]) + h(Y, [Z, X]) + h(Z, [X, Y])}
=

1
2
{(∇Xh)(Y, Z) + h(∇XY, Z) + h(Y,∇XZ)

+ (∇Y h)(X, Z) + h(∇Y X, Z) + h(X,∇YZ)

− (∇Zh)(X, Y) − h(∇Z X, Y) − h(X,∇ZY)

− h(X,∇Y Z − ∇ZY) + h(Y,∇Z X − ∇XZ) + h(Z,∇XY − ∇Y X)}
=h(∇XY, Z) + 1

2
{(∇Xh)(Y, Z) + (∇Y h)(X, Z) − (∇Zh)(X, Y)}.
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We finish the proof by subtracting h(∇XY, Z) on both sides. �

The Riemann curvature tensor of gs is a (1, 3)-tensor field on M. Then R′ := ∂
∂s
|s=0Rs is a

(1, 3)-tensor field on M and we have the following formula.

Lemma 5.2. For all X, Y, Z in TpM, p ∈ M, we have

R′(X, Y)Z = (∇X∇′)(Y, Z) − (∇Y∇′)(X, Z).

Proof. We differentiate the equation

Rs(X, Y)Z = ∇s
X∇s

Y Z − ∇s
Y∇s

XZ − ∇s
[X,Y]Z

with respect to s at s = 0 and we get

R′(X, Y)Z =∇′(X,∇YZ) + ∇X(∇′(Y, Z)) − ∇′(Y,∇XZ) − ∇Y (∇′(X, Z)) − ∇′([X, Y], Z)

=∇′(X,∇YZ) + (∇X∇′)(Y, Z) + ∇′(∇XY, Z) + ∇′(Y,∇XZ)

− ∇′(Y,∇XZ) − (∇Y∇′)(X, Z) − ∇′(∇Y X, Z) − ∇′(X,∇Y Z) − ∇′(∇XY − ∇Y X, Z)

=(∇X∇′)(Y, Z) − (∇Y∇′)(X, Z). �

Before we calculate the variation of the Ricci tensor we define several operators. Let (Ei)
n
i=1

be

a local orthonormal basis of T M and let εi := g(Ei, Ei), i = 1, ..., n. We denote by Γ(⊙2T ∗M) the

space of all symmetric (0, 2)-tensor fields on M. We define the connection Laplacian acting on

Γ(⊙2T ∗M) by

∇∗∇h := −
n∑

i=1

εi∇2
Ei ,Ei

h = −
n∑

i=1

εi∇Ei
∇Ei

h +

n∑

i=1

εi∇∇Ei
Ei

h.

We note that on a Riemannian manifold this operator is elliptic and on a Lorentzian manifold it

is hyperbolic. For h ∈ Γ(⊙2T ∗M) we define

(R̊h)(X, Y) :=

n∑

i=1

εih(R(Ei, X)Y, Ei).

Then we have R̊h ∈ Γ(⊙2T ∗M). For h1, h2 ∈ Γ(⊙2T ∗M) we define

(h1 ◦ h2)(X, Y) :=

n∑

i=1

εih1(X, Ei)h2(Y, Ei).

Then we have h1 ◦ h2 + h2 ◦ h1 ∈ Γ(⊙2T ∗M). We define the Lichnerowicz operator acting on

Γ(⊙2T ∗M) by

∆Lh := ∇∗∇h + ric ◦ h + h ◦ ric − 2R̊h.
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Finally we define the divergence of h ∈ Γ(⊙2T ∗M) by

div h :=

n∑

i=1

εi(∇Ei
h)(Ei, ·).

Note that div h is a 1-form on M. For 1-forms ω on M we define div ∗ω by

div ∗ω(X, Y) := − 1
2
{(∇Xω)(Y) + (∇Yω)(X)}.

Then we have div ∗ω ∈ Γ(⊙2T ∗M) and we note that div ∗ is the L2-adjoint of div . We define the

g-trace of h ∈ Γ(⊙2T ∗M) by

〈g, h〉 :=

n∑

i=1

εih(Ei, Ei).

Then 〈g, h〉 is a smooth function on M. Finally the Hessian of a smooth function f on M is

defined by

∇d f (X, Y) := (∇Xd f )(Y).

Then we have ∇d f ∈ Γ(⊙2T ∗M). Let rics be the Ricci curvature tensor of gs considered as a

(0, 2)-tensor field on M and define ric′ := ∂
∂s
|s=0rics. We obtain the following formula.

Lemma 5.3. We have

ric′ = 1
2
∆Lh − div ∗div h − 1

2
∇d 〈g, h〉 .

We note that every term on the right hand side contains second order derivatives of h. In fact,

ric′ is not elliptic in the Riemannian case and not hyperbolic in the Lorentzian case.

Proof. We will write 〈·, ·〉 instead of g(·, ·). By definition rics(X, Y) is the trace of the endomor-

phism

rics(X, Y) = tr(Rs(·, X)Y).

Since the trace is a linear map independent of s, we get ric′(X, Y) = tr(R′(·, X)Y). We fix a point

p ∈ M and we extend the vectors X, Y ∈ TpM in such a way that ∇X|p = 0 and ∇Y |p = 0 at p.

Furthermore we can choose the local orthonormal basis in such a way that ∇Ei|p = 0 at p. Note

however that the second derivatives of X, Y , and Ei will not vanish at p in general. Then at the
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point p we get using Lemmas 5.1, 5.2

ric′(X, Y) =

n∑

i=1

εi

〈
R′(Ei, X)Y, Ei

〉

=

n∑

i=1

εi{
〈
(∇Ei
∇′)(X, Y), Ei

〉 − 〈
(∇X∇′)(Ei, Y), Ei

〉}

=

n∑

i=1

εi{∂Ei

〈∇′(X, Y), Ei

〉 − ∂X

〈∇′(Ei, Y), Ei

〉}

=
1
2

n∑

i=1

εi{∂Ei
((∇Xh)(Y, Ei) + (∇Y h)(X, Ei) − (∇Ei

h)(X, Y))

− ∂X((∇Ei
h)(Y, Ei) + (∇Y h)(Ei, Ei) − (∇Ei

h)(Ei, Y))}

=
1
2

n∑

i=1

εi{∂Ei
((∇Xh)(Y, Ei) + (∇Y h)(X, Ei) − (∇Ei

h)(X, Y)) − ∂X((∇Y h)(Ei, Ei))}. (1)

Next we analyze each term on the right hand side. We have

n∑

i=1

εi∂X((∇Y h)(Ei, Ei)) =

n∑

i=1

εi∂X(∂Yh(Ei, Ei) − 2h(∇Y Ei, Ei))

= ∂X∂Y 〈g, h〉 − 2

n∑

i=1

εih(∇X∇Y Ei, Ei).

The second term on the right hand side of this equation vanishes. Namely we have

n∑

i=1

εih(∇X∇Y Ei, Ei) =

n∑

i, j=1

εiε j

〈
∇X∇Y Ei, E j

〉
h(E j, Ei)

and using that
〈
Ei, E j

〉
is constant we get

〈
∇X∇Y Ei, E j

〉
= ∂X

〈
∇Y Ei, E j

〉
= ∂X(∂Y

〈
Ei, E j

〉
−

〈
Ei,∇Y E j

〉
) = −∂X

〈
Ei,∇Y E j

〉

= −
〈
Ei,∇X∇Y E j

〉
,

i.e.
〈
∇X∇Y Ei, E j

〉
is antisymmetric in i, j, while εiε jh(E j, Ei) is symmetric in i, j. Using this fact

and renaming i and j we get

n∑

i, j=1

εiε j

〈
∇X∇Y Ei, E j

〉
h(E j, Ei) =

n∑

i, j=1

ε jεi

〈
∇X∇Y E j, Ei

〉
h(Ei, E j)

= −
n∑

i, j=1

εiε j

〈
∇X∇Y Ei, E j

〉
h(E j, Ei)
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and therefore this term vanishes. Altogether we obtain

n∑

i=1

εi∂X((∇Y h)(Ei, Ei)) = ∂X∂Y 〈g, h〉 = ∇d 〈g, h〉 (X, Y). (2)

Next we compute

n∑

i=1

εi∂Ei
((∇Xh)(Y, Ei)) =

n∑

i=1

εi∂Ei
(∂Xh(Y, Ei) − h(∇XY, Ei) − h(Y,∇XEi))

=∂X

n∑

i=1

εi∂Ei
h(Y, Ei) −

n∑

i=1

εih(∇Ei
∇XY, Ei) −

n∑

i=1

εih(Y,∇Ei
∇XEi)

=∂X

(
div h(Y) +

n∑

i=1

εih(∇Ei
Y, Ei) +

n∑

i=1

εih(Y,∇Ei
Ei)

)

−
n∑

i=1

εih(∇Ei
∇XY, Ei) −

n∑

i=1

εih(Y,∇Ei
∇XEi)

=(∇Xdiv h)(Y) +

n∑

i=1

εih(∇X∇Ei
Y, Ei) +

n∑

i=1

εih(Y,∇X∇Ei
Ei)

−
n∑

i=1

εih(∇Ei
∇XY, Ei) −

n∑

i=1

εih(Y,∇Ei
∇XEi)

=(∇Xdiv h)(Y) +

n∑

i=1

εih(R(X, Ei)Y, Ei) +

n∑

i=1

εih(Y,R(X, Ei)Ei)

=(∇Xdiv h)(Y) −
n∑

i=1

εih(R(Ei, X)Y, Ei)

+

n∑

i, j=1

εiε j

〈
R(X, Ei)Ei, E j

〉
h(Y, E j)

=(∇Xdiv h)(Y) − (R̊h)(X, Y) + (ric ◦ h)(X, Y). (3)

Analogously we get

n∑

i=1

εi∂Ei
((∇Xh)(Y, Ei)) = (∇Y div h)(X) − (R̊h)(X, Y) + (h ◦ ric)(X, Y). (4)

We also compute

n∑

i=1

εi∂Ei
((∇Ei

h)(X, Y)) =

n∑

i=1

εi(∇Ei
∇Ei

h)(X, Y) = −∇∗∇h(X, Y). (5)

Inserting (2), (3), (4), (5) into (1) we obtain

ric′(X, Y) = − 1
2
∇d 〈g, h〉 (X, Y) + 1

2
∇∗∇h(X, Y) + 1

2
((∇Xdiv h)(Y) + (∇Ydiv h)(X))

− R̊h(X, Y) + 1
2
(ric ◦ h)(X, Y) + 1

2
(h ◦ ric)(X, Y)

= − 1
2
∇d 〈g, h〉 (X, Y) − (div ∗div h)(X, Y) + 1

2
∆Lh(X, Y).
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which concludes the proof. �

We note that the operator ric′ is not elliptic for a Riemannian metric and is not hyperbolic for a

Lorentzian metric. Namely let W be a vector field on M with compact support. Let (Φs)s be the

flow of W , i.e. every Φs: M → M is a diffeomorphism, Φ0 = idM and ∂Φs(x)
∂s
|s=0 = W(x) for all

x ∈ M. Let g be a semi-Riemannian metric on M and define gs := Φ∗sg. Then g0 = g. In order to

compute h := ∂
∂s
|s=0gs we take X ∈ TpM, p ∈ M, we choose a curve c in M such that c′(0) = X

and we compute

∂

∂s

∣∣∣∣
s=0

gs(X, X) =
∂

∂s

∣∣∣∣
s=0

g(dΦs(X), dΦs(X))

= 2g
( ∇
∂s

∣∣∣∣
s=0

dΦs(X), X
)

= 2g
( ∇
∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0
Φs(c(t)), X

)

= 2g
(∇
∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0
Φs(c(t)), X

)

= 2g
(∇
∂t

∣∣∣∣
t=0

W(c(t)), X
)

= 2g(∇XW, X),

where we have interchanged the derivatives with respect to s and t since ∇ is torsion free. By

polarization we get for all X, Y ∈ TpM, p ∈ M

h(X, Y) = g(∇XW, Y) + g(∇Y W, X). (6)

The Ricci curvature is a natural functional on the space of metrics, i.e. for every diffeomorphism

Φ: M → M we have ricΦ∗g = Φ
∗ricg. Thus we get

ric′ =
d

ds

∣∣∣∣
s=0

ricgs
=

d

ds

∣∣∣∣
s=0
Φ
∗
sric.

If we repeat the above computation with ric instead of g we obtain

ric′(X, Y) = ric(∇XW, Y) + ric(∇YW, X).

Therefore if ric = 0, then we have ric′ = 0 for every h of the form (6). In particular the

kernel of the operator on the right hand side of Lemma 5.3 is infinite dimensional. Thus for

a Riemannian metric this operator cannot be elliptic since otherwise for compact M its kernel

would have finite dimension. We also see that for Lorentzian metrics this operator cannot be

hyperbolic since otherwise its principal symbol would be given by the metric and then also in

the Riemannian case its principal symbol would be given by the metric which is impossible.

Before we compute the first variation of the scalar curvature we need the following lemma.
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Lemma 5.4. Let (M, g) be a semi-Riemannian manifold, let h be a symmetric (0, 2)-tensor

field on M and let ω be a 1-form on M. Then we have

(1) ∆ 〈g, h〉 = 〈g,∆Lh〉,
(2) 〈g, div ∗ω〉 = δω.

Proof. (1) Let p ∈ M and let (Ei)
n
i=1

be a local orthonormal frame such that we have ∇E j|p = 0

for all j. Then at p we have

∆ 〈g, h〉 =
n∑

i=1

εi{−∂Ei
∂Ei
〈g, h〉 + ∂∇Ei

Ei
〈g, h〉}

= −
n∑

i, j=1

εiε j∂Ei
∂Ei

h(E j, E j)

= −
n∑

i, j=1

εiε j{(∇Ei
∇Ei

h)(E j, E j) + h(∇Ei
∇Ei

E j, E j) + h(E j,∇Ei
∇Ei

E j)}

= −
n∑

i, j=1

εiε j(∇Ei
∇Ei

h)(E j, E j)

−
n∑

i, j,k=1

εiε jεk{
〈
∇Ei
∇Ei

E j, Ek

〉
+

〈
Ek,∇Ei

∇Ei
E j

〉
}h(E j, Ek)

= −
n∑

i, j=1

εiε j(∇Ei
∇Ei

h)(E j, E j) −
n∑

i, j,k=1

εiε jεk{∂Ei
∂Ei

〈
E j, Ek

〉
}h(E j, Ek)

= −
n∑

i, j=1

εiε j(∇Ei
∇Ei

h)(E j, E j)

=
〈
g,∇∗∇h

〉
.

By definition we have ∆Lh = ∇∗∇h + ric ◦ h + h ◦ ric − 2R̊h and thus

〈g,∆Lh〉 = 〈
g,∇∗∇h

〉
+

n∑

i, j=1

εiε j{2ric(E j, Ei)h(E j, Ei) − 2h(R(Ei, E j)E j, Ei)}

=
〈
g,∇∗∇h

〉
+ 2 〈ric, h〉 − 2

n∑

i, j,k=1

εiε jεk

〈
R(Ei, E j)E j, Ek

〉
h(Ek, Ei)

=
〈
g,∇∗∇h

〉
.

(2) We have

〈
g, div ∗ω

〉
= − 1

2

n∑

i=1

εi{(∇Ei
ω)(Ei) + (∇Ei

ω)(Ei)} = −
n∑

i=1

εi(∇Ei
ω)(Ei) = δω.
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This finishes the proof. �

We compute the first variation of the scalar curvature.

Lemma 5.5. We have

scal′ = ∆ 〈g, h〉 − δdiv h − 〈ric, h〉 ,

where δ is the codifferential acting on 1-forms.

Proof. By definition we have for all s

scals
=

n∑

i, j=1

(gs)i jrics
i j

and thus

scal′ = −
∑

i, j,k,ℓ

gikg jℓhkℓrici j +

n∑

i, j=1

gi jric′i j = − 〈ric, h〉 +
〈
g, ric′

〉
.

We note that

〈g,∇d 〈g, h〉〉 =
n∑

i=1

εi(∇Ei
d 〈g, h〉)(Ei) =

n∑

i=1

εi∂Ei
∂Ei
〈g, h〉 = −∆ 〈g, h〉 .

Therefore by Lemma 5.3 and Lemma 5.4 we get

〈
g, ric′

〉
=

1
2
〈g,∆Lh〉 − 〈

g, div ∗div h
〉 − 1

2
〈g,∇d 〈g, h〉〉

=
1
2
∆ 〈g, h〉 − δdiv h + 1

2
∆ 〈g, h〉

= ∆ 〈g, h〉 − δdiv h.

This finishes the proof. �

5.2. Constraint equations

Let M be a time-oriented Lorentzian manifold, let M̂ ⊂ M be a spacelike hypersurface and let

ν be the future-directed unit normal vector field along M̂. We denote the metric on M by g and

its restriction to M̂ by ĝ. Furthermore we denote the Levi-Civita connections on M and M̂ by ∇
and ∇̂, respectively. For vector fields X, Y on M̂ we have the decomposition

∇XY = ∇̂XY + K̂(X, Y)ν.

Here K̂ is a symmetric (0, 2)-tensor field on M̂. More precisely K̂ is the second fundamental

form of M̂ in M. Namely taking the scalar product with ν in the above equation and using that ν

is timelike we get 〈∇XY, ν〉 = −K̂(X, Y). On the other hand we have

〈∇XY, ν〉 = ∂X 〈Y, ν〉 − 〈Y,∇Xν〉 = − 〈Y,∇Xν〉
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and thus K̂(X, Y) = 〈∇Xν, Y〉. From differential geometry we know that the curvature tensors of

M and M̂ are related by the Gauss equation and the Codazzi equation. Namely let X, Y, Z,W ∈
TpM̂, p ∈ M̂. Then the Gauss equation reads

〈R(X, Y)Z,W〉 =
〈
R̂(X, Y)Z,W

〉
+ K̂(X,W)K̂(Y, Z) − K̂(X, Z)K̂(Y,W)

and the Codazzi equation reads

〈R(X, Y)ν, Z〉 = (∇̂X K̂)(Y, Z) − (∇̂Y K̂)(X, Z).

Let E1, ..., En be a local orthonormal frame on M̂ which is synchronous at p ∈ M̂, i.e. ∇Ei|p = 0.

By contracting the Codazzi equation we get

ric(X, ν) =

n−1∑

i=1

〈R(Ei, X)ν, Ei〉 − 〈R(ν, X)ν, ν〉 =
n−1∑

i=1

{(∇̂Ei
K̂)(X, Ei) − (∇̂XK̂)(Ei, Ei)}

= div K̂(X) − ∂X

〈
ĝ, K̂

〉

and therefore ric(·, ν)|
T M̂
= div K̂ − d

〈
ĝ, K̂

〉
. Next we contract the Gauss equation twice. The

terms on the right hand side are as follows

n−1∑

i, j=1

〈
R̂(Ei, E j)E j, Ei

〉
= ŝcal,

n−1∑

i, j=1

K̂(Ei, Ei)K̂(E j, E j) =
〈
ĝ, K̂

〉2
,

n−1∑

i, j=1

K̂(Ei, E j)K̂(E j, Ei) = |K̂|2

and on the left hand side we get

n−1∑

i, j=1

〈
R(Ei, E j)E j, Ei

〉
= scal +

n−1∑

i=1

〈R(Ei, ν)ν, Ei〉 +
n−1∑

j=1

〈
R(ν, E j)E j, ν

〉
= scal + 2ric(ν, ν).

Thus from the Gauss equation we get

scal + 2ric(ν, ν) = ŝcal +
〈
ĝ, K̂

〉2 − |K̂|2.

Assume that M is a vacuum solution, i.e. ric ≡ 0. Then we get the so-called constraint equations

ŝcal +
〈
ĝ, K̂

〉2 − |K̂|2 = 0 (7)

div K̂ − d
〈
ĝ, K̂

〉
= 0. (8)

The first equation is also called the Hamiltonian constraint and the second one the momentum

constraint.
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We note that the metric ĝ and the tensor field K̂ on M̂ can be regarded as initial data for the

equation ric ≡ 0, where K̂ plays the role of the derivative with respect to time. Namely for t ∈ R
such that |t| is small we consider the map

Φt : M̂ → M, p 7→ expp(tν),

and we define M̂t := {expp(tν) | p ∈ M̂}. We assume that there exists t0 > 0 such that for all t

with |t| < t0 the map Φt is a diffeomorphism M̂ → M̂t. This hypothesis is not very restrictive

since it is satisfied for example if we replace M̂ by a compact subset of M̂. For |t| < t0 we define

ĝt := Φ∗t g. Then we have ĝ0 = g and the family (̂gt)t of metrics determines the metric g in an

open neighborhood of M̂ in M by

g = −dt2
+ ĝt.

Let X ∈ TpM̂, p ∈ M̂, and let c be a curve such that c′(0) = X. We compute

∂

∂t

∣∣∣∣
t=0

ĝt(X, X) =
∂

∂t

∣∣∣∣
t=0

g(dΦt(X), dΦt(X))

= 2̂g
(∇
∂t

∣∣∣∣
t=0

dΦt(X), X
)

= 2̂g
(∇
∂t

∣∣∣∣
t=0

∂

∂s

∣∣∣∣
s=0

expc(s)(tν), X
)

= 2̂g
( ∇
∂s

∣∣∣∣
s=0

∂

∂t

∣∣∣∣
t=0

expc(s)(tν), X
)

= 2̂g
( ∇
∂s

∣∣∣∣
s=0
ν(c(s)), X

)

= 2̂g(∇Xν, X)

= 2K̂(X, X),

where we have interchanged the derivatives with respect to s and t since ∇ is torsion free. We

conclude that ∂
∂t
|t=0ĝt = 2K̂. Thus ĝ, K̂ can be regarded as initial data for the equation ric ≡ 0,

where K̂ is the derivative with respect to time. If this initial value problem has a solution then

ĝ and K̂ must satisfy the constraint equations (7), (8). In particular, the value of the unknown

at t = 0 and its derivative with respect to time at t = 0 cannot be prescribed independently of

each other. On the other hand, it follows from work by Y. Choquet-Bruhat that for all data ĝ, K̂

on a Riemannian manifold M̂ satisfying the constraint equations the initial value problem has a

solution, at least locally. The construction of solutions to the constraint equations (7), (8) is an

active area of research.

5.3. Linearization of the constraint equations

We compute the linearization of the constraint equations (7), (8) at a given solution (̂g, K̂). We

write

ĝs = ĝ + ŝh + O(s2), K̂s = K̂ + ŝk + O(s2).
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First we compute the linearization of the Hamiltonian constraint. By Lemma 5.5 we get

ŝcal
′
= ∆

〈
ĝ, ĥ

〉
− δdiv ĥ −

〈
r̂ic, ĥ

〉
.

We compute

∂

∂s

∣∣∣∣
s=0

〈
ĝs, K̂s

〉
=
∂

∂s

∣∣∣∣
s=0

ĝ
αβ
s K̂s,αβ = ĝαβ̂kαβ − ĝαµĝβνhµνK̂αβ =

〈
ĝ, k̂

〉
−

〈
K̂, ĥ

〉
(9)

and thus we get
∂

∂s

∣∣∣∣
s=0

〈
ĝs, K̂s

〉2
= 2

〈
ĝ, K̂

〉 ( 〈
ĝ, k̂

〉
−

〈
K̂, ĥ

〉 )
.

We also compute

∂

∂s

∣∣∣∣
s=0
|K̂s|2 =

∂

∂s

∣∣∣∣
s=0

ĝ
αγ
s ĝ

βδ
s K̂s,αβK̂s,γδ

= −2̂gαµĝγνĥµνĝ
βδK̂αβK̂γδ + 2̂gαγĝβδ̂kαβK̂γδ

= −2̂gαµĝγνĥµν(K̂ ◦ K̂)αγ + 2
〈̂
k, K̂

〉

= −2
〈̂
h, K̂ ◦ K̂

〉
+ 2

〈̂
k, K̂

〉
.

Altogether we obtain the linearization of the Hamiltonian constraint (7) at (̂g, K̂)

0 = ∆
〈
ĝ, ĥ

〉
− δdiv ĥ −

〈
r̂ic, ĥ

〉
+ 2

〈
ĝ, K̂

〉 ( 〈
ĝ, k̂

〉
−

〈
K̂, ĥ

〉 )
+ 2

〈̂
h, K̂ ◦ K̂

〉
− 2

〈̂
k, K̂

〉

= ∆

〈
ĝ, ĥ

〉
− δdiv ĥ +

〈
−r̂ic − 2

〈
ĝ, K̂

〉
K̂ + 2K̂ ◦ K̂, ĥ

〉
+ 2

〈〈
ĝ, K̂

〉
ĝ − K̂, k̂

〉
. (10)

We note that this equation contains second order derivatives of ĥ but no derivatives of k̂. Next

we compute the linearization of the momentum constraint. We take the differential on both sides

of (9) and we get
∂

∂s

∣∣∣∣
s=0

d
〈
ĝs, K̂s

〉
= d

〈
ĝ, k̂

〉
− d

〈
K̂, ĥ

〉
.

Thus the linearization of the momentum constraint (8) is

0 = div k̂ + d
〈
K̂, ĥ

〉
− d

〈
ĝ, k̂

〉
+
∂

∂s

∣∣∣∣
s=0

div gs
K̂.

It remains to compute the variation of the divergence. We choose a family of local frames

((Es
i
)n−1
i=1

)s depending smoothly on s such that for all s the frame (Es
i
)n−1
i=1

is orthonormal with

respect to ĝs and such that at a fixed point p ∈ M̂ we have ∇Es
i
|p = 0. We define e j := ∂

∂s
|s=0Es

j
,

j = 1, ..., n−1. In the equation εiδi j = ĝs(E
s
i
, Es

j
) we take the derivative with respect to s at s = 0

and we get

0 = ĥ(Ei, E j) + ĝ(ei, E j) + ĝ(Ei, e j). (11)

Multiplying by ε jE j and summing over j we have

0 =

n−1∑

j=1

ε ĵh(Ei, E j)E j + ei +

n−1∑

j=1

ε ĵg(Ei, e j)E j. (12)
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In the equation 0 = ∇s
Es

i

Es
j

we take the derivative with respect to s at s = 0 and we get

0 = ∇′(Ei, E j) + ∇Ei
e j.

Taking the inner product with Ei and using the variation of ∇ from Lemma 5.1 we get

ĝ(Ei,∇Ei
e j) = −ĝ(∇′(Ei, E j), Ei)

= − 1
2
{(∇Ei

ĥ)(Ei, E j) + (∇E j
ĥ)(Ei, Ei) − (∇Ei

ĥ)(Ei, E j)}
= − 1

2
(∇E j

ĥ)(Ei, Ei). (13)

Let X ∈ TpM̂ and extend X to a locally defined vector field such that ∇X|p = 0. Using the

formula (12) for ei and the variation of ∇ from Lemma 5.1 we compute

∂

∂s

∣∣∣∣
s=0

(div gs
K̂)(X) =

∂

∂s

∣∣∣∣
s=0

n−1∑

i=1

εi(∇s
Es

i
K̂)(Es

i , X)

=
∂

∂s

∣∣∣∣
s=0

n−1∑

i=1

εi{∂Ei
K̂(Es

i , X) − K̂(Es
i ,∇s

Es
i
X)}

=

n−1∑

i=1

εi{∂ei
K̂(Ei, X) + ∂Ei

K̂(ei, X) − K̂(Ei,∇′(Ei, X))}

=

n−1∑

i, j=1

εiε j{−̂h(Ei, E j)∂E j
K(Ei, X) − ĝ(Ei, e j)∂E j

K(Ei, X)}

+

n−1∑

i, j=1

εiε j{∂Ei
{−̂h(Ei, E j)K̂(E j, X) − ĝ(Ei, e j)K̂(E j, X)} − ĝ(∇′(Ei, X), E j)K̂(Ei, E j)}

=

n−1∑

i, j=1

εiε j{−̂h(Ei, E j)(∇E j
K)(Ei, X) − ĝ(Ei, e j)(∇E j

K)(Ei, X)}

+

n−1∑

i, j=1

εiε j{−(∇Ei
ĥ)(Ei, E j)K̂(E j, X) − ĥ(Ei, E j)(∇Ei

K̂)(E j, X)}

+

n−1∑

i, j=1

εiε j{−ĝ(Ei,∇Ei
e j)K̂(E j, X) − ĝ(Ei, e j)(∇Ei

K̂)(E j, X)}

− 1
2

n−1∑

i, j=1

εiε j{(∇Ei
ĥ)(X, E j) + (∇X ĥ)(Ei, E j) − (∇E j

ĥ)(Ei, X)}K̂(Ei, E j)

Renaming i and j we see that two terms in the last line cancel. We also rename i and j in the last

terms of line 2 and 3 on the right hand side and we get

∂

∂s

∣∣∣∣
s=0

(div gs
K̂)(X)
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= −
n−1∑

i, j=1

εiε j{2̂h(Ei, E j)(∇E j
K̂)(Ei, X) + (∇E j

K̂)(Ei, X){̂g(Ei, e j) + ĝ(E j, ei)}}

−
n−1∑

i, j=1

εiε j

{
(∇Ei

ĥ)(Ei, E j)K̂(E j, X) + ĝ(Ei,∇Ei
e j)K̂(E j, X) − 1

2
(∇X ĥ)(Ei, E j)K̂(Ei, E j)

}

By (11) we have ĝ(Ei, e j) + ĝ(E j, ei) = −̂h(Ei, E j). Using this and (13) we get

∂

∂s

∣∣∣∣
s=0

(div gs
K̂)(X) = −

n−1∑

i, j=1

εiε j{̂h(Ei, E j)(∇E j
K̂)(Ei, X) + (∇Ei

ĥ)(Ei, E j)K̂(E j, X)}

+
1
2

n−1∑

i, j=1

εiε j{(∇E j
ĥ)(Ei, Ei)K̂(E j, X) − (∇X ĥ)(Ei, E j)K̂(Ei, E j)}.

We obtain

∂

∂s

∣∣∣∣
s=0

(div gs
K̂)(X) = −

〈̂
h,∇·K̂(·, X)

〉
−

〈
div ĥ, K̂(·, X)

〉

+
1
2

( 〈
d
〈
ĝ, ĥ

〉
, K̂(·, X)

〉
−

〈
∇X ĥ, K̂

〉 )
.

Thus the linearization of the momentum constraint at (̂g, K̂) gives for all X ∈ T M̂

0 =(div k̂)(X) + ∂X

〈
K̂, ĥ

〉
− ∂X

〈
ĝ, k̂

〉
−

〈̂
h,∇·K̂(·, X)

〉
−

〈
div ĥ, K̂(·, X)

〉

+
1
2

( 〈
d
〈
ĝ, ĥ

〉
, K̂(·, X)

〉
−

〈
∇X ĥ, K̂

〉 )
. (14)

Definition 5.6. A solution (̂g, K̂) to the constraint equations is called linearization stable if

for every solution (̂h, k̂) of the linearization (10), (14) of the constraint equations at (̂g, K̂)

there exists a continuously differentiable 1-parameter family (̂gs, K̂s) of smooth solutions to

the constraint equations, such that ĝ0 = ĝ, K̂0 = K̂, ∂
∂s
|s=0ĝs = ĥ, ∂

∂s
|s=0K̂s = k̂.

The following example shows that not every solution to the constraint equations is linearization

stable.

Example 5.7. Let M̂ = T n−1, the (n−1)-dimensional torus with a flat metric ĝ and let K̂ = 0. We

see immediately that (̂g, K̂) is a solution to the constraint equations (7), (8). In fact, the solution

of this initial value problem gives the manifold M = R × M̂ with the flat metric g = −dt2
+ ĝ.

The linearization (10), (14) of the constraint equations at (̂g, K̂) gives

∆

〈
ĝ, ĥ

〉
− δdiv ĥ = 0,

div k̂ − d
〈
ĝ, k̂

〉
= 0.
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Using Cartesian coordinates on the universal cover Rn−1 of T n−1 we write ĝ =
∑

j dx j ⊗ dx j and

we put

k̂ := dx1 ⊗ dx2
+ dx2 ⊗ dx1, ĥ := 0.

Then we have ∇̂k = 0 and thus div k̂ = 0. We also have
〈
ĝ, k̂

〉
= 0 and thus (̂h, k̂) satisfy the

linearization of the constraint equations at (̂g, K̂). Assume that there is a smooth 1-parameter

family (̂gs, K̂s) of solutions to the constraint equations such that ĝ0 = ĝ, K̂0 = K̂, ∂
∂s
|s=0ĝs = ĥ,

∂
∂s
|s=0K̂s = k̂. Then we have

〈
ĝs, K̂s

〉
ĝs

=

〈
ĝ + O(s2), ŝk + O(s2)

〉
ĝ+O(s2)

= s
〈
ĝ, k̂

〉
+ O(s2) = O(s2),

∣∣∣K̂s

∣∣∣2
ĝs
=

∣∣∣ŝk + O(s2)
∣∣∣̂
gs+O(s2)

= s2
∣∣∣̂k
∣∣∣2
ĝ
+ O(s3)

and thus from the Hamiltonian constraint (7) we get

ŝcal̂gs
= −

〈
ĝs, K̂s

〉2

ĝs

+

∣∣∣K̂s

∣∣∣2
ĝs
= O(s4) + s2

∣∣∣̂k
∣∣∣2
ĝ
+ O(s3) = 2s2

+ O(s3) = s2(2 + O(s)).

For every s the term O(s) is bounded uniformly in T n−1 since T n−1 is compact. Thus for small

|s|, s , 0 we have ŝcalgs
> 0 everywhere on T n−1. This contradicts the fact that T n−1 does not

admit a Riemannian metric of positive scalar curvature. This follows from the Gauss-Bonnet

theorem for n − 1 = 2 and was proved by Schoen-Yau [?, Cor. 2] for n − 1 ≤ 7 and by Gromov-

Lawson [?, Cor. A, p. 94] for general n. Thus for (̂h, k̂) there is no smooth 1-parameter family of

solutions to the constraint equations as in the above definition and therefore the solution (̂g, K̂)

is not linearization stable.

Next we investigate under which assumption one can conclude that solutions to the constraint

equations are linearization stable. Using the operators

H : Γ(⊙2T ∗M̂) × Γ(⊙2T ∗M̂)→ C∞(M̂), H (̂g, K̂) := ŝcal +
〈
ĝ, K̂

〉2 − |K̂|2,

M : Γ(⊙2T ∗M̂) × Γ(⊙2T ∗M̂)→ Ω1(M̂), M(̂g, K̂) := div K̂ −
〈
ĝ, K̂

〉
,

the constraint equations (7), (8) read H (̂g, K̂) = 0,M(̂g, K̂) = 0. By (10) and (14) the differen-

tials ofH andM take the form

d
(̂g,K̂)
H (̂h, k̂) = ∆

〈
ĝ, ĥ

〉
− δdiv ĥ + terms of order 0 in k̂,

d
(̂g,K̂)
M(̂h, k̂) = div k̂ − d

〈
ĝ, k̂

〉
+ terms of order at most 1 in ĥ.

Thus the operator

dH := d
(̂g,K̂)
H : Γ(⊙2T ∗M̂) ⊕ Γ(⊙2T ∗M̂)→ C∞(M̂)

is of order 2 in ĥ and of order 0 in k̂ and the operator

dM := d
(̂g,K̂)
M : Γ(⊙2T ∗M̂) ⊕ Γ(⊙2T ∗M̂)→ Ω1(M̂)
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is of order 1 in k̂ and of order at most 1 in ĥ. It follows that

dH ⊕ dM : Γ(⊙2T ∗M̂) ⊕ Γ(⊙2T ∗M̂)→ C∞(M̂) ⊕Ω1(M̂)

is a linear differential operator of bi-degree (2, 1).

We recall that for every linear differential operator P: Γ(E) → Γ(F) of order ℓ, where E and F

are vector bundles over M̂, the principal symbol of P is defined as follows: Let p ∈ M̂, ξ ∈ T ∗pM̂,

s ∈ Ep. We choose f ∈ C∞(M̂) such that f (p) = 0 and d f |p = ξ and we choose an extension

of s to a locally defined section of E in a neighborhood of p, which is also denoted by s. Then

we define

σℓ(P, ξ)(s) := P
( 1

ℓ!
f ℓs

)∣∣∣∣
p

and we note that σℓ(P, ξ)(s) is independent of the choices of f and s. We note that the definitions

in the literature vary slightly. In an analogous way we can define the principal symbol of a

differential operator of bi-degree (k, ℓ). By this definition we have

σ2,1(dH ⊕ dM, ξ)(̂h, k̂) =


dH( 1

2
f 2̂h, f k̂

)

dM( 1
2

f 2̂h, f k̂
)

 .

Using that f (p) = 0 and d f |p = ξ we compute at p

∆

〈
ĝ, 1

2
f 2̂h

〉
=

1
2
∆

(
f 2

〈
ĝ, ĥ

〉 )

=
1
2
∆
(

f 2) 〈ĝ, ĥ
〉
− 1

2

〈
∇( f 2),∇

( 〈
ĝ, k̂

〉 )〉
+

1
2

f 2
∆

〈
ĝ, ĥ

〉

= (− 〈∇ f ,∇ f 〉 + f∆ f )
〈
ĝ, ĥ

〉

= −
〈
ξ#, ξ#

〉 〈
ĝ, ĥ

〉

= −|ξ|2
〈
ĝ, ĥ

〉
,

σ1(div , ξ)(̂h) = div ( f ĥ) =

n−1∑

i=1

∇Ei
( f ĥ)(Ei, ·) =

n−1∑

i=1

(∂Ei
f · ĥ + f∇Ei

ĥ)(Ei, ·) = ĥ(ξ#, ·),

σ1(δ, ξ)(ω) = δ( fω) = f δω − 〈d f , ω〉 = − 〈d f , ω〉 = −ω(ξ#),

d
〈
ĝ, f k̂

〉
= d

(
f
〈
ĝ, k̂

〉 )
=

〈
ĝ, k̂

〉
d f + f d

〈
ĝ, k̂

〉
=

〈
ĝ, k̂

〉
ξ.

Since the principal symbol is compatible with composition of differential operators we get

σ2(δdiv , ξ)(̂h) = σ1(δ, ξ) ◦ σ1(div , ξ)(̂h) = −̂h(ξ#, ξ#).

Using these computations we obtain

σ2,1(dH ⊕ dM, ξ)(̂h, k̂) =


−|ξ|2

〈
ĝ, ĥ

〉
+ ĥ(ξ#, ξ#)

k̂(ξ#, ·) −
〈
ĝ, k̂

〉
ξ

 .
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Lemma 5.8. For every ξ ∈ T ∗pM̂ \ {0} the operator

σ2,1(dH ⊕ dM, ξ) : ⊙2T ∗pM̂ ⊕ ⊙2T ∗pM̂ → R ⊕ T ∗pM̂

is surjective.

Proof. (a) Let r ∈ R. We put E1 :=
ξ#

|ξ| and extend to an orthonormal basis E1, ..., En−1 of TpM̂

where n− 1 ≥ 2. Then we define ĥ such that ĥ(E1, E1) = r
|ξ|2 , ĥ(E2, E2) = − r

|ξ|2 and ĥ(Ei, E j) = 0

otherwise. In particular, we have ĥ(ξ#, ξ#) = r and
〈
ĝ, ĥ

〉
= 0. We also put k̂ = 0. It follows that

σ2,1(dH ⊕ dM, ξ)(̂h, 0) =


r

0

 .

(b) Let ω ∈ T ∗pM̂. Case 1: ω and ξ are linearly independent.

We put

k̂ :=
|ω|2

|ξ|2|ω|2 − 〈ξ, ω〉2
(ω ⊗ ξ + ξ ⊗ ω) − 〈ω, ξ〉

|ξ|2|ω|2 − 〈ξ, ω〉2
ω ⊗ ω.

We also put E1 :=
ξ#

|ξ| and extend to an orthonormal basis E1, ..., En−1 of TpM̂. In particular, we

have ξ(E j) = 0 for all j ≥ 2 and we get

〈
ĝ, k̂

〉
=

|ω|2

|ξ|2|ω|2 − 〈ξ, ω〉2
· 2ω(E1)ξ(E1) − 〈ω, ξ〉

|ξ|2|ω|2 − 〈ξ, ω〉2
|ω|2

=
|ω|2

|ξ|2|ω|2 − 〈ξ, ω〉2
· 2 〈ω, ξ〉 − 〈ω, ξ〉

|ξ|2|ω|2 − 〈ξ, ω〉2
|ω|2

=
〈ω, ξ〉

|ξ|2|ω|2 − 〈ξ, ω〉2
|ω|2

and since ω(ξ#) = 〈ω, ξ〉 and ξ(ξ#) = |ξ|2 we obtain

k̂(ξ#, ·) −
〈
ĝ, k̂

〉
ξ =

|ω|2

|ξ|2|ω|2 − 〈ξ, ω〉2
(〈ω, ξ〉 ξ + |ξ|2ω) − 〈ω, ξ〉

|ξ|2|ω|2 − 〈ξ, ω〉2
〈ω, ξ〉ω

− 〈ω, ξ〉
|ξ|2|ω|2 − 〈ξ, ω〉2

|ω|2ξ

=
|ξ|2|ω|2 − 〈ξ, ω〉2

|ξ|2|ω|2 − 〈ξ, ω〉2
ω

= ω.

Case 2: ω and ξ are linearly dependent.

We may assume without loss of generality that ω = ξ. We put E1 :=
ξ#

|ξ| and extend to an

orthonormal basis E1, ..., En−1 of TpM̂ where n−1 ≥ 2. Then we define k̂ such that k̂(E1, E1) = 1,
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k̂(E2, E2) = −1 and k̂(Ei, E j) = 0 otherwise. In particular we have k̂(ξ#, ·) = ξ = ω and〈
ĝ, k̂

〉
= 0.

In both cases we put ĥ = 0. It follows that

σ2,1(dH ⊕ dM, ξ)(0, k̂) =


0

ω



and this shows the assertion. �

Let V,W be finite dimensional Euclidean vector spaces and let A: V → W be linear and

surjective. Then AA∗: W → W is bijective. Namely, if y ∈ ker(AA∗) then we have

0 = 〈AA∗y, y〉 = |A∗y|2 and thus A∗y = 0. Since A is surjective we may write y = Ax and

we get 0 = 〈A∗Ax, x〉 = |Ax|2 = |y|2 and thus y = 0. It follows that AA∗ is injective and thus

bijective.

We conclude that the operator

σ2,1(dH ⊕ dM, ξ) ◦ σ2,1(dH ⊕ dM, ξ)∗ : R ⊕ T ∗pM̂ → R ⊕ T ∗pM̂

is bijective. Since dM is an operator of degree 1 in k̂ we have

σ2,1(dH ⊕ dM, ξ)∗ = σ2,1((dH ⊕ (−dM), ξ)∗)

and therefore

σ2,1(dH ⊕ dM, ξ) ◦ σ2,1(dH ⊕ dM, ξ)∗

= σ4,2((dH ⊕ dM) ◦ (dH ⊕ dM)∗, ξ) ◦


1 0

0 −1



= σ4,2(d(H ×M) ◦ d(H ×M)∗, ξ) ◦


1 0

0 −1

 .

Since this operator is bijective it follows that

P := d(H ×M) ◦ d(H ×M)∗ : C∞(M̂) ⊕Ω1(M̂)→ C∞(M̂) ⊕Ω1(M̂)

is a linear elliptic differential operator of bi-degree (4, 2). Obviously P is formally self-adjoint.

In particular, if M̂ is compact, then we have dim ker(P) = codim im(P) < ∞. Furthermore all

distributional solutions of the equation P( f , ω) = 0 are smooth.

We note that we have ker(P) = ker(d(H × M)∗). Indeed if P( f , ω) = 0, then by taking the

L2-product with ( f , ω) we get

0 =

∫

M̂

〈
d(H ×M)d(H ×M)∗( f , ω), ( f , ω)

〉
dv̂ol =

∫

M̂

|d(H ×M)∗( f , ω)|2dv̂ol

and thus d(H ×M)∗( f , ω) = 0.

Now the principal symbol of the operator d(H × M)∗ is injective but not surjective. Such an

operator is also called overdetermined elliptic.
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Remark 5.9. One can compute that for a Lorentzian manifold M with ric ≡ 0 and for a spacelike

hypersurface M̂ ⊂ M with future pointing unit normal ν the following holds.

(1) One has

ker(d(H ×M)∗) =
{
( f , ω) ∈ C∞(M̂) ×Ω1(M̂)

∣∣∣∣
there is a Killing vector field X

on M such that X|
M̂
= f ν + ω#

}
.

The elements of ker(d(H ×M)∗) are sometimes called Killing initial data or KIDs.

(2) If M̂ is compact and j > n
2

where n − 1 = dim M̂, then the map

H ×M : W j+2,p(⊙2T ∗M̂) ×W j+2,p(⊙2T ∗M̂)→ W j,p(M̂) ×W j+1,p(T ∗M̂)

is smooth. Here W j,p(E) is the space of sections of a vector bundle E over M̂ whose weak

derivatives up to order j exist and are in Lp(M̂).

Theorem 5.10 (Moncrief). Let M be a time-oriented ricci-flat Lorentzian manifold without

Killing vector fields. Let M̂ ⊂ M be a compact spacelike hypersurface. Then every solution of

the constraint equations (7), (8) is linearization stable.

Example 5.7 shows that the hypothesis that M has no Killing vector fields cannot be removed.

Indeed, on M = R × T n−1 with a flat Lorentzian metric parallel vector fields are Killing vector

fields.

Proof. Since M has no Killing vector fields we know that ker(d(H × M)∗) = {0} and thus

d(H ×M) is surjective. It follows that for all j > n
2

the map

H ×M : W j+2,p(⊙2T ∗M̂) ×W j+2,p(⊙2T ∗M̂)→ W j,p(M̂) ×W j+1,p(T ∗M̂)

is a submersion. Since im(d(H×M)∗) is a complement to ker(d(H×M)) we may use the implicit

function theorem for Banach spaces which tells us that (H ×M)−1(0) is a smooth submanifold

of W j+2,p(M̂) × W j+2,p(M̂). Let (̂g, K̂) be a solution to the constraint equations (7), (8) and let

(̂h, k̂) be a solution to the linearization (10), (14) of the constraint equations at (̂g, K̂). Then for

all j > n
2

there is a C1-curve

[−1, 1] ∋ s 7→ (̂
g

( j)
s , K̂

( j)
s

) ∈ (H ×M)−1(0) ⊂ W j+2,p(M̂) ×W j+2,p(M̂)

such that ĝ
( j)

0
= ĝ, K̂

( j)

0
= K̂, ∂

∂s
|s=0ĝ

( j)
s = ĥ, ∂

∂s
|s=0K̂

( j)
s = k̂. After re-parametrization of the curves

away from s = 0 we may assume that for all j > n
2

and for all s we have

∥∥∥̂g
( j)
s

∥∥∥
W j+2,p ≤

∥∥∥̂g
∥∥∥

W j+2,p + 1,
∥∥∥K̂

( j)
s

∥∥∥
W j+2,p ≤

∥∥∥K̂
∥∥∥

W j+2,p + 1,
∥∥∥∂sĝ

( j)
s

∥∥∥
W j+2,p ≤

∥∥∥̂h
∥∥∥

W j+2,p + 1,
∥∥∥∂sK̂

( j)
s

∥∥∥
W j+2,p ≤

∥∥∥̂k
∥∥∥

W j+2,p + 1.
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Then for every j0 > n
2

the sequence
(̂
g

( j)
• , K̂

( j)
•

)
j is eventually contained and bounded in

C1([−1, 1],W j0+2,p). By Rellich’s embedding theorem and after taking a diagonal sub-

sequence we obtain a subsequence converging to an element
(̂
g

(∞)
• , K̂(∞)

•
)

in every space

C1([−1, 1],W j0+2,p), j0 >
n
2
. By the Sobolev embedding theorem we conclude that

(̂
g

(∞)
• , K̂(∞)

•
) ∈

C1([−1, 1],C∞(M̂)). This 1-parameter family of solutions to (7), (8) has the desired properties.�

5.4. Existence of solutions to the gravitational wave equation

We start by proving the following lemma.

Lemma 5.11. Let (M, g) be a semi-Riemannian manifold. Then for all symmetric (0, 2)-tensor

fields h on M the following holds.

(1) For all vector fields X, Y on M we have

∇X∇Y h − ∇Y∇Xh − ∇[X,Y]h = −h(R(X, Y)·, ·) − h(·,R(X, Y)·).

(2) If ric ≡ 0, then ∇∗∇div h = div (∆Lh).

Proof. (1) We may assume that X, Y, X1, X2 are locally defined vector fields such that at a fixed

point p ∈ M we have ∇X1|p = 0, ∇X2|p = 0, ∇X|p = 0, ∇Y |p = 0. Then at p we have

(∇X∇Yh)(X1, X2) = ∂X(∇Y h)(X1, X2) − (∇Yh)(∇X X1, X2) − (∇Y h)(X1,∇XX2)

= ∂X∂Yh(X1, X2) − ∂Xh(∇Y X1, X2) − ∂Xh(X1,∇Y X2)

− ∂Yh(∇XX1, X2) + h(∇Y∇XX1, X2)

− ∂Yh(X1,∇XX2) + h(X1,∇Y∇XX2),

(∇Y∇Xh)(X1, X2) = ∂Y∂Xh(X1, X2) − ∂Yh(∇XX1, X2) − ∂Yh(X1,∇XX2)

− ∂Xh(∇Y X1, X2) + h(∇X∇Y X1, X2)

− ∂Xh(X1,∇Y X2) + h(X1,∇X∇Y X2).

Taking the difference and using that [X, Y]|p = 0 we obtain the result of part (1).

(2) Since ric ≡ 0 we have ∆Lh = ∇∗∇h − 2R̊h where by definition

(R̊h)(X, Y) =

n∑

i=1

εih(R(Ei, X)Y, Ei)

for X, Y ∈ TpM, p ∈ M. Let X be a locally defined vector field on M and let (Ei)
n
i=1

be a local

orthonormal frame such that at a fixed point p ∈ M we have ∇X|p = 0 and ∇Ei|p = 0 for all i.
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The following computations are valid at p. By the first and the second Bianchi identity we get

(div R̊h)(X) =

n∑

j=1

ε j(∇E j
R̊h)(X, E j)

=

n∑

i, j=1

εiε j{(∇E j
h)(R(Ei, X)E j, Ei) + h((∇E j

R)(Ei, X)E j, Ei)}

=

n∑

i, j,k=1

εiε jεk{
〈
R(Ei, X)E j, Ek

〉
(∇E j

h)(Ek, Ei) +
〈
(∇E j

R)(Ei, X)E j, Ek

〉
h(Ek, Ei)}

=

n∑

i, j,k=1

εiε jεk{−
〈
R(X, E j)Ei, Ek

〉
−

〈
R(E j, Ei)X, Ek

〉
}(∇E j

h)(Ek, Ei)

+

n∑

i, j,k=1

εiε jεk{−
〈
(∇Ei

R)(X, E j)E j, Ek

〉
−

〈
(∇XR)(E j, Ei)E j, Ek

〉
}h(Ek, Ei).

Since
〈
R(X, E j)Ei, Ek

〉
is antisymmetric in i, k and (∇E j

h)(Ek, Ei) is symmetric in i, k the first sum

on the right hand side vanishes. The third and fourth sum on the right hand side are proportional

to derivatives of ric and therefore vanish. Thus we get

(div R̊h)(X) =

n∑

i, j=1

εiε j(∇E j
h)(R(Ei, E j)X, Ei). (15)

Next we compute

(div∇∗∇h)(X) =

n∑

i=1

εi∂Ei
(∇∗∇h)(X, Ei)

=

n∑

i, j=1

εiε j{−(∇Ei
∇E j
∇E j

h)(X, Ei) + (∇Ei
∇∇E j

E j
h)(X, Ei)}.

By part (1) and since ∇E j|p = 0 we have for all i, j

(∇Ei
∇∇E j

E j
h)(X, Ei) = (∇∇E j

E j
∇Ei

h)(X, Ei) + (∇[Ei ,∇E j
E j]h)(X, Ei)

− h(R(Ei,∇E j
E j)X, Ei) − h(X,R(Ei,∇E j

E j)Ei)

= (∇∇Ei
∇E j

E j
h)(X, Ei)

and thus

(div∇∗∇h)(X) =

n∑

i, j=1

εiε j{−(∇Ei
∇E j
∇E j

h)(X, Ei) + (∇∇Ei
∇E j

E j
h)(X, Ei)}. (16)

Using part (1) with ∇E j
h instead of h and using that [Ei, E j]|p = 0 we get for all i, j

(∇Ei
∇E j
∇E j

h)(X, Ei) = (∇E j
∇Ei
∇E j

h)(X, Ei)

− (∇E j
h)(R(Ei, E j)X, Ei) − (∇E j

h)(X,R(Ei, E j)Ei). (17)
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By applying ∂E j
to the equation in part (1) we get

(∇E j
∇Ei
∇E j

h)(X, Ei) = ∂E j
{(∇E j

∇Ei
h)(X, Ei) + (∇[Ei ,E j]h)(X, Ei)

− h(R(Ei, E j)X, Ei) − h(X,R(Ei, E j)Ei)}
= (∇E j

∇E j
∇Ei

h)(X, Ei) + (∇E j
∇[Ei ,E j]h)(X, Ei)

− (∇E j
h)(R(Ei, E j)X, Ei) − h((∇E j

R)(Ei, E j)X, Ei)

− (∇E j
h)(X,R(Ei, E j)Ei) − h(X, (∇E j

R)(Ei, E j)Ei).

Since [Ei, E j]|p = 0 we get by part (1)

(∇E j
∇[Ei ,E j]h)(X, Ei) = (∇[Ei ,E j]∇E j

h)(X, Ei) + (∇[E j ,[Ei,E j]]h)(X, Ei)

= (∇∇E j
(∇Ei

E j−∇E j
Ei)h)(X, Ei)

and thus

(∇E j
∇Ei
∇E j

h)(X, Ei) = (∇E j
∇E j
∇Ei

h)(X, Ei) + (∇∇E j
(∇Ei

E j−∇E j
Ei)h)(X, Ei)

− (∇E j
h)(R(Ei, E j)X, Ei) − h((∇E j

R)(Ei, E j)X, Ei)

− (∇E j
h)(X,R(Ei, E j)Ei) − h(X, (∇E j

R)(Ei, E j)Ei).

Inserting this into (17) we get

(∇Ei
∇E j
∇E j

h)(X, Ei) = (∇E j
∇E j
∇Ei

h)(X, Ei) + (∇∇E j
(∇Ei

E j−∇E j
Ei)h)(X, Ei)

− 2(∇E j
h)(R(Ei, E j)X, Ei) − h((∇E j

R)(Ei, E j)X, Ei)

− 2(∇E j
h)(X,R(Ei, E j)Ei) − 2(X, (∇E j

R)(Ei, E j)Ei)

and inserting this into (16) we obtain

(div∇∗∇h)(X) =

n∑

i, j=1

εiε j{−(∇E j
∇E j
∇Ei

h)(X, Ei) − (∇∇E j
(∇Ei

E j−∇E j
Ei)h)(X, Ei)

+ 2(∇E j
h)(R(Ei, E j)X, Ei) + h((∇E j

R)(Ei, E j)X, Ei)

+ 2(∇E j
h)(X,R(Ei, E j)Ei) + 2h(X, (∇E j

R)(Ei, E j)Ei) + (∇∇Ei
∇E j

E j
h)(X, Ei)}.

Using (15) we conclude that

(div∆Lh)(X) = (div∇∗∇h)(X) − 2(div R̊h)(X)

=

n∑

i, j=1

εiε j{−(∇E j
∇E j
∇Ei

h)(X, Ei) − (∇∇E j
(∇Ei

E j−∇E j
Ei)h)(X, Ei)

+ h((∇E j
R)(Ei, E j)X, Ei)

+ 2(∇E j
h)(X,R(Ei, E j)Ei) + 2h(X, (∇E j

R)(Ei, E j)Ei) + (∇∇Ei
∇E j

E j
h)(X, Ei)}

=

n∑

i, j=1

εiε j{−(∇E j
∇E j
∇Ei

h)(X, Ei) + (∇∇E j
∇E j

Ei
h)(X, Ei)}
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+

n∑

i, j,k=1

εiε jεk{
〈
R(Ei, E j)E j, Ek

〉
(∇Ek

h)(X, Ei) +
〈
(∇E j

R)(Ei, E j)X, Ek

〉
h(Ek, Ei)

+ 2
〈
R(Ei, E j)Ei, Ek

〉
(∇E j

h)(X, Ek) + 2
〈
(∇E j

R)(Ei, E j)Ei, Ek

〉
h(X, Ek)}.

We note that all triple sums on the right hand side vanish. Namely the first and the third triple sum

are proportional to ric and therefore vanish. The fourth triple sum is proportional to derivatives

of ric and therefore vanishes as well. Moreover by the first Bianchi identity we have
〈
(∇E j

R)(Ei, E j)X, Ek

〉
= −

〈
(∇E j

R)(X, Ek)Ei, E j

〉

=

〈
(∇XR)(Ek, E j)Ei, E j

〉
+

〈
(∇Ek

R)(E j, X)Ei, E j

〉
.

Thus the second triple sum is proportional to derivatives of ric and therefore vanishes. We

conclude that

(div∆Lh)(X) =

n∑

i, j=1

εiε j{−(∇E j
∇E j
∇Ei

h)(X, Ei) + (∇∇E j
∇E j

Ei
h)(X, Ei)}. (18)

For all j we have

(∇E j
div h)(X) = ∂E j

div h(X) − div h(∇E j
X)

= ∂E j

( n∑

i=1

εi(∇Ei
h)(X, Ei)

)
−

n∑

i=1

εi(∇Ei
h)(∇E j

X, Ei)

=

n∑

i=1

εi(∇E j
∇Ei

h)(X, Ei) +

n∑

i=1

εi(∇Ei
h)(X,∇E j

Ei).

Since ∇E j|p = 0 we have ∇∗∇div h = −∑n
j=1 ε j∇E j

∇E j
div h and thus

(∇∗∇div h)(X) = −
n∑

j=1

ε j∂E j
(∇E j

div h)(X)

=

n∑

i, j=1

εiε j∂E j
{−(∇E j

∇Ei
h)(X, Ei) − (∇Ei

h)(X,∇E j
Ei)}

=

n∑

i, j=1

εiε j{−(∇E j
∇E j
∇Ei

h)(X, Ei) − (∇Ei
h)(X,∇E j

∇E j
Ei)}.

Thus by (18) and since 〈Ei, Ek〉 is constant we get

(div∆Lh)(X) − (∇∗∇div h)(X) =

n∑

i, j=1

εiε j{(∇∇E j
∇E j

Ei
h)(X, Ei) + (∇Ei

h)(X,∇E j
∇E j

Ei)}

=

n∑

i, j,k=1

εiε jεk{
〈
∇E j
∇E j

Ei, Ek

〉
+

〈
Ei,∇E j

∇E j
Ek

〉
}(∇Ek

h)(X, Ei)

=

n∑

i, j,k=1

εiε jεk{∂E j
∂E j
〈Ei, Ek〉}(∇Ek

h)(X, Ei)

= 0.
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This finishes the proof. �

Let M be a time-oriented Lorentzian manifold with ric ≡ 0. Our aim is to construct a solution to

the gravitational wave equation

∆Lh − div ∗div h − 1
2
∇d 〈g, h〉 = 0. (19)

Let M̂ ⊂ M be a spacelike hypersurface. We assume that M̂ is a Cauchy hypersurface, i.e. every

maximal timelike curve in M meets M̂ exactly once. Let ν be the future directed unit normal

vector field along M̂.

Theorem 5.12. Let ric ≡ 0 on M and let M̂ ⊂ M be a spacelike Cauchy hypersurface such

that K̂ ≡ 0 on M̂. Then for every solution (̂h, k̂) to the linearization (10), (14) of the constraint

equations at (̂g, K̂) there exists a solution h to the gravitational wave equation (19) such that

for all X, Y ∈ T M̂ we have h(X, Y) = ĥ(X, Y) and (∇νh)(X, Y) = k̂(X, Y) and such that h

satisfies div h ≡ 0 and 〈g, h〉 ≡ 0.

Remark 5.13. (1) In the physics literature such a solution is called to be in TT-gauge, where

TT means transverse and traceless.

(2) The assumptions of the theorem are satisfied e.g. if M is Schwarzschild spacetime with

coordinates (t, r, σ) ∈ R × ((0, 2m) ∪ (2m,∞)) × S 2 and M̂ = {(t, r, σ) ∈ M | t = t0}, where

t0 ∈ R is fixed. M̂ is a totally geodesic hypersurface since it is the fixed point set of the

isometry (t, r, σ) 7→ (2t0 − t, r, σ).

Proof. By Theorem 3.2.11 in [?] we know that there exists a unique solution h ∈ Γ(⊙2T ∗M) to

the wave equation ∆Lh = 0 which has the following initial data along M̂:

h(X, Y) = ĥ(X, Y), (∇νh)(X, Y) = k̂(X, Y),

h(ν, X) = (div k̂)(X), (∇νh)(ν, X) = (div ĥ)(X),

h(ν, ν) =
〈
ĝ, k̂

〉
, (∇νh)(ν, ν) =

〈
ĝ, k̂

〉
,

where X, Y ∈ T M̂. We claim that h is a solution to the gravitational wave equation (19). In order

to prove this let (Ei)
n−1
i=1

be a local orthonormal frame tangential to M̂. Then along M̂ we get

using the initial data

〈g, h〉 = −h(ν, ν) +

n−1∑

i=1

h(Ei, Ei) = −h(ν, ν) +

n−1∑

i=1

ĥ(Ei, Ei) = −h(ν, ν) +
〈
ĝ, ĥ

〉
= 0

∂ν 〈g, h〉 = 〈g,∇νh〉 = −(∇νh)(ν, ν) +

n−1∑

i=1

(∇νh)(Ei, Ei) = −(∇νh)(ν, ν) +
〈
ĝ, k̂

〉
= 0.
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Using Lemma 5.4 we conclude that the function 〈g, h〉 is a solution to the wave equation

∇∗∇ 〈g, h〉 = 〈g,∆Lh〉 = 0 on M with the initial data 〈g, h〉 = ∂ν 〈g, h〉 = 0 along M̂. By

uniqueness of the solution to the wave equation with these initial data it follows that 〈g, h〉 ≡ 0

on M. Next we show that div h ≡ 0 on M. Let X ∈ TpM̂, p ∈ M̂, and extend X to a locally de-

fined vector field such that at p we have ∇X|p = 0. We also assume that at p we have ∇Ei |p = 0,

i = 1, ..., n − 1. Since K̂ ≡ 0 by assumption, we conclude that we also have ∇̂Ei|p = ∇̂X|p = 0.

Thus along M̂ we get using the initial data

(div h)(X) = −(∇νh)(ν, X) +

n−1∑

i=1

(∇Ei
h)(Ei, X)

= −(∇νh)(ν, X) +

n−1∑

i=1

∂Ei
h(Ei, X)

= −(∇νh)(ν, X) +

n−1∑

i=1

∂Ei
ĥ(Ei, X)

= −(∇νh)(ν, X) +

n−1∑

i=1

((∇̂Ei
ĥ)(Ei, X) + ĥ(∇̂Ei

Ei, X) + ĥ(Ei, ∇̂Ei
X))

= −(∇νh)(ν, X) + (div ĥ)(X)

= 0.

Since ric ≡ 0 and K̂ ≡ 0 we have r̂ic ≡ 0 and thus by (10), (14) we get

0 = ∆
〈
ĝ, ĥ

〉
− δdiv ĥ,

0 = div k̂ − d
〈
ĝ, k̂

〉
.

Using the above initial data we get along M̂

(div h)(ν) = −(∇νh)(ν, ν) +

n−1∑

i=1

(∇Ei
h)(Ei, ν)

= −(∇νh)(ν, ν) +

n−1∑

i=1

∂Ei
h(Ei, ν)

= −(∇νh)(ν, ν) +

n−1∑

i=1

∂Ei
((div k̂)(Ei))

= −
〈
ĝ, k̂

〉
− δdiv k̂.

By some computations we obtain for all X ∈ T M̂

(div h)(ν) = 0, (∇νdiv h)(X) = 0, (∇νdiv h)(ν) = 0.

Thus by Lemma 5.11 we conclude that div h satisfies the wave equation ∇∗∇div h = div (∆Lh) =

0 with initial conditions div h = 0, ∇νdiv h = 0 along M̂. By uniqueness of the solution to the

wave equation with these initial data it follows that div h ≡ 0 on M. �
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5.5. Construction of solutions to the constraint equations

Let M̂ be a 3-dimensional manifold. Our aim is to find Riemannian metrics ĝ and symmetric

(0, 2)-tensor fields K̂ on M̂ which satisfy the constraint equations

ŝcal +
〈
ĝ, K̂

〉2 − |K̂ |2
ĝ
= 0,

div K̂ − d
〈
ĝ, K̂

〉
= 0.

The space of solutions is not understood in full generality. We introduce the so-called conformal

method which can be used to construct solutions in certain cases.

Definition 5.14. Let (M̂, ĝ) be a Riemannian manifold of dimension n. The operator

L : Ω
1(M̂)→ Γ(⊙2T ∗M̂), ω 7→ Lω := −2div ∗ω +

2

n
δω · ĝ, i.e.

Lω(X, Y) = (∇Xω)(Y) + (∇Yω)(X) − 2

n

〈∇ω, ĝ〉 ĝ(X, Y)

is called the conformal Killing operator.

Remark 5.15. (1) If V is a Killing vector field, i.e. ∇V is skew-symmetric, then ω := V♭

satisfies Lω = 0.

(2) We have Lω = 0 if and only if V := ω♯ is a conformal Killing vector field. Here a vector

field V on M̂ is called a conformal Killing vector field of (M̂, ĝ) if the flow (Φs)s of V

consists of conformal diffeomorphisms of (M̂, ĝ), i.e. Φ∗s ĝ is conformally equivalent to ĝ

for all s.

(3) Lω is trace-free since we have

〈
Lω, ĝ

〉
= 2

n∑

i=1

(∇Ei
ω)(Ei) −

2

n

〈∇ω, ĝ〉 〈̂
g, ĝ

〉
︸︷︷︸
=n

= 0.

From now we take dim M̂ = 3 and we assume that the following quantities are given on M̂:

g0, a Riemannian metric,

σ, a symmetric (0, 2)-tensor field which is trace-free and divergence-free with respect to g0,

i.e. 〈g0, σ〉 = 0 and div g0
σ = 0,

τ, a function on M̂.

We determine on M̂:

Φ, a positive function,

ω, a 1-form
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by solving the following system of equations if this is possible

div 0L0ω =
2

3
Φ

6dτ,

−∆0Φ =
1

8
scal0Φ −

1

8
|σ + L0ω|20Φ−7

+
1

12
τ2
Φ

5,

(20)

where the subscripts ”0” indicate that the respective quantities are defined with respect to g0. In

the literature the second equation is often called the Lichnerowicz equation.

Remark 5.16. The operator div 0 ◦ L0: Ω1(M̂) → Ω1(M̂) is a linear elliptic differential oper-

ator of second order. Thus (20) is a semilinear elliptic system of equations and is thus more

convenient for analysis than the original constraint equations.

Theorem 5.17. Assume that (Φ, ω) solve the system (20). Then

ĝ := Φ4g0, K̂ := Φ−2(σ + L0ω) +
1

3
τΦ4g0

solve the constraint equations.

Remark 5.18. (1) This method of constructing solutions to the constraint equations is called

the conformal method since we have fixed the conformal class of ĝ by fixing g0.

(2) The constraint equations form an underdetermined system of equations. After fixing τ,

σ and the conformal class of ĝ we are left to solve the system (20) which is no longer

underdetermined.

(3) In local coordinates we have ĝi j
= Φ

−4g
i j

0
. Thus for (0, 2)-tensor fields µ, λ on M̂ we get

〈µ, λ〉̂g = µi jλkℓĝ
ikĝ jℓ

= Φ
−8µi jλkℓg

ik
0 g

jℓ
0
= Φ

−8 〈µ, λ〉0 . (21)

It follows that 〈
ĝ, K̂

〉
ĝ
= Φ

−6 〈g0, σ + L0ω〉g0
+ τ = τ

and therefore τ is the mean curvature of M̂ in the Einstein development of M.

For every Riemannian metric g on M̂ the conformal Laplace operator or Yamabe operator for g

is defined by

Yg := ∆g +
1

8
scalg.

Lemma 5.19. Let dim M̂ = 3 and let ĝ = Φ4g0. Then for all u ∈ C∞(M̂) we have

Yĝ(Φ−1u) = Φ−5Y0(u).



5.5. Construction of solutions to the constraint equations 157

Proof. The proof can be found in [?], Folgerung 2.1.5. �

Using this lemma with u = Φ we get

1

8
scal̂g = Yĝ(1) = Φ−5Y0(Φ) = Φ−5

(
∆0Φ +

1

8
scal0Φ

)

and therefore

scal̂g = Φ
−5(8∆0Φ + scal0Φ). (22)

Lemma 5.20. Let dim M̂ = 3 and let ĝ = Φ4g0. For all trace-free symmetric (0, 2)-tensor

fields µ on M̂ we have

div ĝµ = Φ
−4{div 0µ + 2Φ−1µ(∇0

Φ, ·)}.

Proof. We fix a point p ∈ M̂. Let (Ei)
3
i=1

be a local g0-orthonormal frame of T M̂ with respect to

g0 such that at p we have ∇0Ei|p = 0 for all i. Let X ∈ TpM̂ and extend X to a vector field defined

on an open neighborhood of p such that at p we have ∇0X|p = 0. Then the vectors Êi := Φ−2Ei,

i = 1, 2, 3 form a local ĝ-orthonormal frame. We compute

(div ĝµ)(X) =

3∑

i=1

(∇̂
Êi
µ)(Êi, X)

= Φ
−4

3∑

i=1

(∇̂Ei
µ)(Ei, X)

= Φ
−4

3∑

i=1

(∂Ei
µ(Ei, X) − µ(∇̂Ei

Ei, X) − µ(Ei, ∇̂Ei
X)).

We write Φ4
= e2 f where f ∈ C∞(M̂) and we note that the Levi-Civita connections ∇̂, ∇0 for ĝ

and g0 are related by the formula (see [?], Lemma 2.1.2)

∇̂XY = ∇0
XY + d f (X)Y + d f (Y)X − g0(X, Y)∇0 f .

We conclude that

(div ĝµ)(X) = Φ−4
{
(div 0µ)(X) −

3∑

i=1

µ(2d f (Ei)Ei − g0(Ei, Ei)∇0 f , X)

−
3∑

i=1

µ(Ei, d f (Ei)X + d f (X)Ei − g0(X, Ei)∇0 f )
}

= Φ
−4{(div 0µ)(X) − 2µ(∇0 f , X) + 3µ(∇0 f , X)
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− µ(∇0 f , X) − d f (X) 〈µ, g0〉g0
+ µ(X,∇0 f )}

= Φ
−4{(div 0µ)(X) + µ(X,∇0 f )}.

Since we have f = 2 lnΦ we get ∇0 f = 2Φ−1∇0
Φ. This finishes the proof. �

Proof of Theorem 5.17. Using (21) we compute

|K̂|2
ĝ
=

∣∣∣∣Φ−2(σ + L0ω) +
1

3
τ̂g

∣∣∣∣
2

ĝ
= Φ

−4|σ + L0ω|2ĝ +
τ2

9
|̂g|2

ĝ
= Φ

−12 |σ + L0ω|20 +
τ2

3

and therefore using (22) we obtain

ŝcal +
〈
ĝ, K̂

〉2

ĝ
− |K̂|2

ĝ
= Φ

−5(8∆0Φ + scal0Φ) + τ2 −
(
Φ
−12|σ + L0ω|20 +

τ2

3

)

= 8Φ−5
(
∆0Φ +

1

8
scal0Φ −

1

8
|σ + L0ω|20Φ−7

+
1

12
τ2
Φ

5
)

= 0.

Thus the Hamiltonian constraint is satisfied. Let (Êi)
3
i=1

be a local ĝ-orthonormal frame of T M̂.

We note that for all f ∈ C∞(M̂) and for all symmetric (0, 2)-tensor fields µ on M̂ we have

div ĝ( fµ) =

3∑

i=1

∇̂
Êi

( fµ)(Êi, ·) =
3∑

i=1

(∂
Êi

f · µ + f ∇̂
Êi
µ)(Êi, ·) = µ(∇̂ f , ·) + f div ĝµ.

Using this and Lemma 5.20 we compute

div ĝK̂ = div ĝ

(
Φ
−2(σ + L0ω) +

τ

3
ĝ
)

= (σ + L0ω)(∇̂Φ−2, ·) + Φ−2div ĝ(σ + L0ω) +
1

3
ĝ(∇̂τ, ·)

= −2Φ−3(σ + L0ω)(∇̂Φ, ·) + Φ−6div 0(σ + L0ω) + 2Φ−7(σ + L0ω)(∇0
Φ, ·) + 1

3
dτ.

Since for all u ∈ C∞(M̂) we have

∇̂u = ĝi j∂iu · ∂ j = Φ
−4g

i j

0
∂iu · ∂ j = Φ

−4∇0u

we obtain

div ĝK̂ = −2Φ−7(σ + L0ω)(∇0
Φ, ·) + Φ−6div 0(σ + L0ω) + 2Φ−7(σ + L0ω)(∇0

Φ, ·) + 1

3
dτ

= Φ
−6div 0(σ + L0ω) +

1

3
dτ

= Φ
−6div 0(L0ω) +

1

3
dτ

=
2

3
dτ +

1

3
dτ

= d
〈
ĝ, K̂

〉
ĝ
.

Thus also the momentum constraint is satisfied. �
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Now the question arises whether the equations (20) can be solved. The following example shows

that this is unfortunately not always the case.

Example 5.21. Let M̂ be compact without boundary, let g0 be a Riemannian metric on M̂ such

that scal0 ≥ 0, scal0 . 0. Let σ ≡ 0 and let τ be constant. Assume that (Φ, ω) is a solution to

(20). Then we have div 0L0ω = 0 and thus by the second equation

0 =

∫

M̂

〈div 0L0ω,ω〉 dv =

∫

M̂

〈
L0ω, div ∗ω

〉
dv =

∫

M̂

〈
L0ω,− 1

2
L0ω +

1

3
δω · g0

〉
dv

= − 1
2

∫

M̂

|L0ω|20dv +
1

3

∫

M̂

δω 〈L0ω, g0〉︸     ︷︷     ︸
=0

dv = − 1
2
‖L0ω‖2

L2(M̂)
.

We conclude that L0ω = 0. Substituting this into the first equation we get

−∆0Φ =
1

8
scal0Φ +

1

12
τ2
Φ

5

and thus

0 = −
∫

M̂

∆0Φ dv =

∫

M̂

(1

8
scal0Φ +

τ2

12
Φ

5
)
dv.

Since scal0 ≥ 0 and scal0 . 0 and Φ > 0 the right hand side is strictly positive which is a

contradiction. The same argument also shows that there is no solution to (20) if

• scal0 ≥ 0, τ ≡ const , 0, σ ≡ 0,

• scal0 ≡ 0, τ ≡ 0, σ . 0

• scal0 < 0, τ ≡ 0.

Next we construct solutions to the system (20) in some cases using the method of sub- and

supersolutions as in the article [?] by Isenberg. The following theorem shows how this method

works.

Theorem 5.22. Let M̂ be a closed Riemannian manifold of dimension n. Let f ∈ C∞(M̂ ×
(0,∞)) and let Φ−,Φ+ ∈ C∞(M̂) such that

0 < Φ− ≤ Φ+,
−∆Φ− ≥ f (x,Φ−),

−∆Φ+ ≤ f (x,Φ+),

where f (x,Φ±) denote the functions x 7→ f (x,Φ±(x)). Then there exists Φ ∈ C∞(M̂) such that

Φ− ≤ Φ ≤ Φ+,
−∆Φ = f (x,Φ).
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Remark 5.23. For every ρ > 0 the operator P := ∆ + ρ is strictly positive and thus invertible

on L2(M̂). For P the following maximum principle holds: If PΦ ≥ 0 on M̂ then Φ ≥ 0 on M̂.

Namely if k(t, x, y) is the heat kernel of ∆ on M̂, then e−ρtk(t, x, y) is the heat kernel of P, i.e. the

integral kernel of the operator e−tP. We conclude that the integral kernel of P−1 (i.e. the Green

function of P) is given by

G(x, y) =

∫ ∞

0

e−ρtk(t, x, y)dt ∈ (0,∞], for all x, y ∈ M̂

since we have ∫ ∞

0

e−tPdt = −P−1e−tP|∞t=0 = P−1.

Therefore if PΦ ≥ 0, then we get for all x ∈ M̂

Φ(x) = P−1PΦ(x) =

∫

M̂

G(x, y)︸ ︷︷ ︸
>0

(PΦ)(y)︸   ︷︷   ︸
≥0

dy ≥ 0.

Proof of Theorem 5.22. (a) We put

I := [min
M̂

Φ−,max
M̂

Φ+].

Then M̂ × I is compact and thus there exists ρ > 0 such that for all x ∈ M̂ and for all s ∈ I we

have
∂ f

∂s
(x, s) ≤ ρ. We put P := ∆ + ρ and we define

F : M̂ × I → R, F(x, s) := ρs − f (x, s).

Then we have ∂F
∂s
= ρ − ∂ f

∂s
≥ 0 on M̂ × I. The hypotheses on Φ± read

−∆Φ− ≥ f (x,Φ−)⇐⇒ PΦ− ≤ F(x,Φ−),

−∆Φ+ ≤ f (x,Φ+)⇐⇒ PΦ+ ≥ F(x,Φ+)

and we have

−∆Φ = f (x,Φ)⇐⇒ PΦ = F(x,Φ).

(b) We solve inductively

PΦ j+1 = F(x,Φ j), j = 0, 1, 2, ..., Φ0 = Φ+.

By elliptic regularity we know that Φ j ∈ C∞(M̂) for all j. We claim that for all j we have

Φ j ≥ Φ j+1 ≥ Φ−.

In order to show the claim for j = 0 we use that

P(Φ+ − Φ1) = PΦ+ − PΦ1 ≥ F(x,Φ+) − F(x,Φ+) = 0.
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By the maximum principle we get Φ+ − Φ1 ≥ 0, i.e.Φ1 ≤ Φ+. Furthermore we have

P(Φ1 − Φ−) ≥ F(x,Φ+) − F(x,Φ−) ≥ 0,

since Φ− ≤ Φ+ and s 7→ F(x, s) is monotonically increasing on I. By the maximum principle

we conclude Φ1 − Φ− ≥ 0, i.e.Φ− ≤ Φ1. This shows the claim for j = 0. Now assume that the

claim is true for some j ≥ 1. We have

P(Φ j − Φ j+1) = F(x,Φ j−1) − F(x,Φ j) ≥ 0,

since Φ j−1 ≥ Φ j by the inductive hypothesis and since s 7→ F(x, s) is monotonically increasing

on [min
M̂
Φ j,max

M̂
Φ j−1] ⊂ I. By the maximum principle we get Φ j ≥ Φ j+1 and analogously

we show that Φ j+1 ≥ Φ−. We have proved the claim and thus we get

Φ+ ≥ Φ1 ≥ Φ2 ≥ Φ3 ≥ ... ≥ Φ−.

In particular, the sequence (Φ j) j converges pointwise to a function Φ: M̂ → R such that we have

Φ− ≤ Φ ≤ Φ+.

(c) Next we show that Φ ∈ C∞(M̂). In the following estimates we will use some constants

a1, a2, a3, ..., which will all be independent of j. First we note that

‖F(x,Φ j)‖C0(M̂)
≤ ‖F‖

C0(M̂×I)
=: a1

and thus for all p ≥ 1 we get

‖F(x,Φ j)‖Lp(M̂)
≤ a1vol(M̂)1/p

=: a2.

We choose p > n = dim M̂ and since PΦ j+1 = F(x,Φ j) we get by elliptic estimates for Sobolev

spaces that there exist a3, a4 > 0 such that for all j we have

‖Φ j+1‖W2,p(M̂)
≤ a3‖F(x,Φ j)‖Lp(M̂)

+ a4‖Φ j+1‖L1(M̂)
≤ a3 · a2 + a4‖Φ+‖L1(M̂)

=: a5.

By the Sobolev embedding theorem we have a continuous embedding W2,p(M̂) ֒→ C0,α(M̂) for

some α > 0. Thus there exists a6 > 0 such that for all j we have

‖Φ j+1‖C0,α(M̂)
≤ a6

and thus there exists a7 > 0 such that for all j we have

‖F(x,Φ j+1)‖
C0,α(M̂)

≤ a7.

By Schauder estimates there exist a8, a9 > 0 such that for all j we have

‖Φ j+1‖C2,α(M̂)
≤ a8‖F(x,Φ j)‖C0,α(M̂)

+ a9‖Φ j‖C0(M̂)
≤ a8 · a7 + a9‖Φ+‖C0(M̂)

=: a10.

Iterating this procedure we obtain for every k ∈ N a number bk > 0 such that for all j we have

‖Φ j‖Ck,α(M̂)
≤ bk. Now we choose α′ such that 0 < α′ < α. Then the embedding Ck,α(M̂) ֒→

Ck,α′(M̂) is compact and thus after passing to a subsequence (Φ j) j converges in Ck,α′(M̂). The

limit is the function Φ obtained above. We choose a diagonal subsequence and we get that

Φ ∈ Ck,α′(M̂) for all k, i.e.Φ ∈ C∞(M̂).

(d) For all j we have PΦ j+1 = F(x,Φ j). As j → ∞ the left hand side tends to PΦ and the right

hand side tends to F(x,Φ). Thus we have PΦ = F(x,Φ). �
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Now we apply Theorem 5.22 to construct solutions to the system (20) under the following as-

sumptions. Let (M̂, g0) be a 3-dimensional closed Riemannian manifold with scal0 < 0. Let σ

be a symmetric (0, 2)-tensor field on M̂ such that 〈g0, σ〉0 = 0 and div 0σ = 0 and let τ be a

non-zero constant function on M̂. We put ω := 0. Then we have div 0L0ω = 0 = 2
3
Φ

6dτ for all

Φ ∈ C∞(M̂). Thus the first equation in (20) is satisfied and it remains to solve the Lichnerowicz

equation. We put

f : M̂ × (0,∞)→ R, f (x, s) :=
1

8
scal0(x)s − 1

8
|σ(x)|20 s−7

+
τ2

12
s5.

We estimate

f (x, s) ≤
(1

8
max

M̂

scal0 +
τ2

12
s4

)
s.

Since M̂ is closed and scal0 < 0 we have max
M̂

scal0 < 0. Thus there exists s− > 0 such that for

all s with 0 < s ≤ s− and for all x ∈ M̂ we have f (x, s) ≤ 0. We estimate

f (x, s) ≥
(1

8
min

M̂

scal0s−4 − 1

8
max

M̂

|σ|20s−12
+
τ2

12

)
s5.

Since τ2 > 0 there exists s+ > 0 such that for all s ≥ s+ and for all x ∈ M̂ we have f (x, s) ≥ 0.

We put

Φ− := s−, Φ+ := s+.

Then we have 0 < Φ− ≤ Φ+ and

−∆0Φ− = 0 ≥ f (x,Φ−),

−∆0Φ+ = 0 ≤ f (x,Φ+).

By Theorem 5.22 there exists Φ ∈ C∞(M̂) such that Φ− ≤ Φ ≤ Φ+, in particular Φ > 0, and

−∆0Φ = f (x,Φ), i.e. we get a solution to the Lichnerowicz equation. By Theorem 5.17 we get

a solution to the constraint equations.

Remark 5.24. Every closed manifold of dimension 3 carries a Riemannian metric with scal < 0.

Thus on every closed manifold of dimension 3 there exist solutions to the constraint equations.



6. Petrov classification

The Petrov classification will divide relativistic spacetimes into types according to algebraic

properties of their curvature tensors. So we start with some algebraic considerations.

6.1. Algebraic curvature tensors

Definition 6.1. Let V be a finite dimensional real vector space. A (0, 4)-tensor R on V , i.e. a

multilinear map

R : V × V × V × V → R

is called an algebraic curvature tensor if the following holds for all X, Y,W, Z ∈ V:

(1) skew symmetry: R(X, Y,W, Z) = −R(Y, X,W, Z) = −R(X, Y, Z,W);

(2) Bianchi identity: R(X, Y,W, Z)+ R(X,W, Z, Y) + R(X, Z, Y,W) = 0.

Lemma 6.2. If R is an algebraic curvature tensor, then for all X, Y,W, Z ∈ V we have

R(X, Y,W, Z) = R(W, Z, X, Y).

Proof. Using the skew symmetry and the Bianchi identity we get

R(X, Y,W, Z) = −R(X,W, Z, Y) − R(X, Z, Y,W)

= R(W, X, Z, Y) + R(Z, X, Y,W)

= −R(W, Y, X, Z)− R(W, Z, Y, X)− R(Z,W, X, Y) − R(Z, Y,W, X)

= 2R(W, Z, X, Y) + R(Y,W, X, Z) + R(Y, Z,W, X)

= 2R(W, Z, X, Y) − R(Y, X, Z,W)

= 2R(W, Z, X, Y) − R(X, Y,W, Z).

Adding R(X, Y,W, Z) to both sides and dividing by 2 concludes the proof. �

Now we assume that V carries an inner product 〈·, ·〉 which is non-degenerate but possibly in-

definite.
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Definition 6.3. The contraction of the algebraic curvature tensor R with respect to 〈·, ·〉 is the

(0, 2)-tensor on V defined by

C(R)(X, Y) :=

n∑

i=1

εiR(Ei, X, Ei, Y)

for X, Y ∈ V , where (Ei)
n
i=1

is an orthonormal basis of (V, 〈·, ·〉) and εi = 〈Ei, Ei〉, i = 1, ..., n.

Fact. We recall the universal property of Λ2(V): For every skew-symmetric bilinear map

β : V × V → W there exists a unique linear map ℓ: Λ2(V)→ W such that β(X, Y) = ℓ(X ∧ Y) for

all X, Y ∈ V .

V × V
∧

//

∀β
$$■

■

■

■

■

■

■

■

■

■

Λ
2(V)

∃!ℓ

��

W

Thus for fixed W, Z ∈ V there is a unique linear map R̃W,Z: Λ2(V)→ R such that

R̃W,Z(X ∧ Y) = R(X, Y,W, Z)

for all X, Y ∈ V . Moreover for fixed X, Y ∈ V there is a unique linear map R̂X∧Y : Λ2(V) → R
such that

R̂X∧Y(W ∧ Z) = R̃W,Z(X ∧ Y) = R(X, Y,W, Z)

for all W, Z ∈ V . We put with slight abuse of notation

R : Λ2(V) × Λ2(V)→ R, R(X ∧ Y,W ∧ Z) := R̂X∧Y(W ∧ Z) = R(X, Y,W, Z).

Note that this map is bilinear and symmetric by Lemma 6.2. The inner product 〈·, ·〉 on V induces

an inner product 〈·, ·〉 on Λ2(V) as follows. For X, Y ∈ V we define

〈X ∧ Y,W ∧ Z〉 := 〈X,W〉 〈Y, Z〉 − 〈Y,W〉 〈X, Z〉 = det


〈X,W〉 〈X, Z〉

〈Y,W〉 〈Y, Z〉



and we extend this definition bilinearly to arbitrary elements of Λ2(V). If (Ei)
n
i=1

is an orthonor-

mal basis of (V, 〈·, ·〉) and εi := 〈Ei, Ei〉, i = 1, ..., n, then (Ei ∧ E j)1≤i< j≤n is an orthonormal basis

of (Λ2(V), 〈·, ·〉). Namely, for i, j, i′, j′ ∈ {1, ..., n} with i < j and i′ < j′ and we compute
〈
Ei ∧ E j, Ei′ ∧ E j′

〉
= 〈Ei, Ei′〉

〈
E j, E j′

〉
−

〈
E j, Ei′

〉 〈
Ei, E j′

〉
= δii′εiδ j j′ε j − δ ji′ε jδi j′εi.

If the second term on the right hand side were nonzero we would have j = i′ < j′ = i contra-

dicting the hypothesis. Thus we have
〈
Ei ∧ E j, Ei′ ∧ E j′

〉
= δ(i, j)(i′ , j′)εiε j.

In particular, we see that the inner product 〈·, ·〉 on Λ2(V) is non-degenerate.
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Definition 6.5. Let g, h be symmetric bilinear forms on V . We use g, h to define a (0, 4)-tensor

on V by setting

(g �∧ h)(X, Y,W, Z) := det


g(X,W) g(X, Z)

h(Y,W) h(Y, Z)

 .

Lemma 6.6. g �∧ h satisfies the Bianchi identity.

Proof. We compute

(g �∧ h)(X, Y,W, Z) + (g �∧ h)(X, Z, Y,W) + (g �∧ h)(X,W, Z, Y)

=g(X,W)h(Y, Z) − g(X, Z)h(Y,W)

+ g(X, Y)h(Z,W) − g(X,W)h(Z, Y)

+ g(X, Z)h(Y,W) − g(X, Y)h(W, Z)

=0. �

In general g �∧ h does not satisfy the skew symmetry from the definition of algebraic curvature

tensors. However we see that for g = h the skew symmetry holds and thus we use polarization:

(g + h) �∧ (g + h) = g �∧ g + g �∧ h + h �∧ g + h �∧ h.

Since (g + h) �∧ (g + h), g �∧ g and h �∧ h are skew-symmetric we see that

g �∧ h + h �∧ g =: g ? h

is skew-symmetric and therefore defines an algebraic curvature tensor. The (0, 4)-tensor g ? h is

called the Kulkarni-Nomizu product of g and h.

Lemma 6.7. Let g := 〈·, ·〉 be an inner product on V and let n = dim V. Let R be an algebraic

curvature tensor on V and define Ric := C(R) and scal := C(Ric) := 〈Ric, g〉. Then the

following holds

(a) C(g �∧ g) = 1
2
C(g ? g) = (n − 1)g,

(b) C(g ? Ric) = (n − 2)Ric + scal · g.
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Proof. (a) We compute

C(g �∧ g)(X, Y) =

n∑

i=1

εi(g �∧ g)(Ei, X, Ei, Y)

=

n∑

i=1

εi[〈Ei, Ei〉 〈X, Y〉 − 〈Ei, Y〉 〈X, Ei〉]

= n 〈X, Y〉 − 〈X, Y〉
= (n − 1)g(X, Y).

(b) We calculate

C(g ? Ric)(X, Y) =

n∑

i=1

εi(g �∧Ric + Ric �∧ g)(Ei, X, Ei, Y)

=

n∑

i=1

εi[〈Ei, Ei〉Ric(X, Y) − 〈Ei, Y〉Ric(X, Ei)

+ Ric(Ei, Ei) 〈X, Y〉 − Ric(Ei, Y) 〈X, Ei〉]
=n Ric(X, Y) − Ric(X, Y) + scal 〈X, Y〉 − Ric(X, Y)

=(n − 2)Ric(X, Y) + scal · g(X, Y). �

Our next aim is to decompose every algebraic curvature tensor R as

R = W + αg ? Ric + βscal · g ? g,

where W is an algebraic curvature tensor with C(W) = 0 and α, β ∈ R are universal constants

which depend only on n = dim V . Assume that we have such a decomposition. Then by the

previous lemma we get

Ric = C(R) = C(W) + αC(g ? Ric) + βscal · C(g ? g)

= α((n − 2)Ric + scal · g) + 2βscal(n − 1)g

and thus

(1 − α(n − 2))Ric = (α + 2β(n − 1))scal · g.
If n ≥ 3 then one can easily find examples of algebraic curvature tensors R such that Ric is not

a multiple of g. Therefore we need to require 1 − α(n − 2) = 0. It follows that α = 1
n−2

and
1

n−2
+ 2β(n − 1) = 0 thus β = − 1

2(n−1)(n−2)
.

Definition 6.8. For n ≥ 3 the algebraic curvature tensor

W := R − 1

n − 2
g ? Ric +

1

2(n − 1)(n − 2)
scal · g ? g

is called the Weyl curvature tensor of R.
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Corollary 6.9. W is an algebraic curvature tensor with C(W) = 0.

Remark 6.10. We can give an alternative decomposition of the algebraic curvature tensor R as

follows. We want to decompose Ric as

Ric = Ric0 + γscal · g

such that C(Ric0) = 0 and γ ∈ R. Assume that we have such a decomposition. It follows that

scal = C(Ric) = 0 + γscal · n

and thus γ = 1
n
. Thus we define

Ric0 = Ric − 1

n
scal · g.

Inserting this definition into the above decomposition of R yields

R = W +
1

n − 2
g ? Ric − 1

2(n − 1)(n − 2)
scal · g ? g

= W +
1

n − 2
g ?

(
Ric0 +

1

n
scal · g

)
− 1

2(n − 1)(n − 2)
scal · g ? g

= W +
1

n − 2
g ? Ric0 +

( 1

n(n − 2)
− 1

2(n − 1)(n − 2)

)
scal · g ? g

= W +
1

n − 2
g ? Ric0 +

1

2n(n − 1)
scal · g ? g.

Clearly, if Ric = 0 then we have R = W .

If n = 2, every algebraic curvature tensor is of the form R = αg ? g with α ∈ R. Then we have

Ric = 2αg, Ric0 = 0, W = 0 and scal = 4α, hence

R =
scal

4
g ? g =

K

2
g ? g

where K is the Gauss curvature of the surface.

6.2. Hodge-⋆ operator

Let V be a real vector space of dimension n equipped with a non-degenerate inner product 〈·, ·〉
of signature (n−σ,σ) where σ ∈ {0, ..., n} denotes the maximal dimension of a negative definite

linear subspace of V . We assume that V is equipped with an orientation given by ω ∈ Λn(V)

such that 〈ω,ω〉 = (−1)σ.
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Lemma 6.11. For every k ∈ {0, ..., n} there is a unique homomorphism ⋆ : Λk(V)→ Λn−k(V)

such that α ∧ ⋆β = 〈α, β〉ω for all α, β ∈ Λk(V).

Proof. Uniqueness: Assume that ⋆ and ⋆̃ are two such homomorphisms. We fix β ∈ Λk(V).

Then for all α ∈ Λk(V) we have

α ∧ ⋆β = 〈α, β〉ω = α ∧ ⋆̃β

and thus α ∧ (⋆β − ⋆̃β) = 0. Let (ei)
n
i=1

be an orthonormal basis of V . Then the elements of the

form

ei1 ∧ ... ∧ eik =: eI , I = {i1, ..., ik}, 1 ≤ i1 < ... < ik ≤ n,

are an orthonormal basis of Λk(V). Thus we can write

⋆β − ⋆̃β =
∑

I

cIeI , cI ∈ R, I = {i1, ..., in−k}, 1 ≤ i1 < ... < in−k ≤ n.

For every subset J ⊂ {1, ..., n}, |J| = k, we write Jc := {1, ..., n} \ J and putting α := eJ we get

0 = α ∧ (⋆β − ⋆̃β) = eJ ∧
∑

I, |I|=n−k

cIeI = eJ ∧ cJc eJc = ±cJcω.

Hence we have cJc = 0 for all J with |J| = k and thus ⋆β − ⋆̃β = 0.

Existence: Let I ⊂ {1, ..., n} with |I| = k. We define ⋆eI := ηIeIc , where ηI ∈ {±1} is such that

ηIeI ∧ eIc = 〈eI , eI〉ω. We extend this definition linearly and we obtain a map ⋆: Λk(V) →
Λ

n−k(V) with the property stated in the assertion. �

Definition 6.12. The linear map ⋆ : Λk(V)→ Λn−k(V) is called the Hodge-⋆ operator.

Since we will be interested in Lorentzian 4-manifolds we consider the following example.

Example 6.13. Let n = 4, k = 2, σ = 1. Let e1, ..., e4 be an orthonormal basis of V such that for

εi := 〈ei, ei〉, i = 1, ..., 4 we have ε1 = −1, ε2 = ε3 = ε4 = 1 and let ω = −e1234. We compute

e12 ∧ ⋆e12 = 〈e12, e12〉ω = (−1)(−e1234) = e1234 and thus ⋆ e12 = e34,

e13 ∧ ⋆e13 = 〈e13, e13〉ω = e1234 = −e1324 and thus ⋆ e13 = −e24,

e14 ∧ ⋆e14 = 〈e14, e14〉ω = e1234 = e1423 and thus ⋆ e14 = e23,

e23 ∧ ⋆e23 = 〈e23, e23〉ω = −e1234 = −e2314 and thus ⋆ e23 = −e14

e24 ∧ ⋆e24 = 〈e24, e24〉ω = −e1234 = e2413 and thus ⋆ e24 = e13,

e34 ∧ ⋆e34 = 〈e34, e34〉ω = −e1234 = −e3412 and thus ⋆ e34 = −e12.

The general formula for {i, j, k, l} = {1, 2, 3, 4} is

⋆ei j = −εiε jsign(i jkl)ekl .
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Lemma 6.14. (1) For all α ∈ Λk(V), β ∈ Λn−k(V) we have 〈α, ⋆β〉 = (−1)k(n−k) 〈⋆α, β〉.
(2) We have ⋆2

= (−1)k(n−k)+σ idΛk(V).

Proof. (1) Using the definition of ⋆ and the antisymmetry of ∧ we get

〈⋆α, β〉ω = ⋆α ∧ ⋆β = (−1)k(n−k) ⋆ β ∧ ⋆α = (−1)k(n−k) 〈⋆β, α〉ω = (−1)k(n−k) 〈α, ⋆β〉ω.

(2) For I ⊂ {1, ..., n} with |I| = k we have ⋆eI = ηIeIc with ηI ∈ {±1} and thus ⋆ ⋆ eI = ηIηIceI .

Taking the inner product with eI we get

ηIηIc 〈eI , eI〉 = 〈eI , ⋆ ⋆ eI〉 = (−1)k(n−k) 〈⋆eI , ⋆eI〉 = (−1)k(n−k) 〈eIc , eIc〉

where in the last equality we have used ⋆eI = ηIeIc with ηI ∈ {±1}. We get

ηIηIc = (−1)k(n−k) 〈eIc , eIc〉 〈eI , eI〉

and by definition of σ we have 〈eIc , eIc〉 〈eI , eI〉 = (−1)σ. �

Example 6.15. Let n = 4, k = 2, σ = 1. Then ⋆ is self-adjoint with respect to 〈·, ·〉 and

⋆2
= −idΛ2(V). We define a complex structure on Λ2(V) by putting

(a + ib) · β := a · β + b · ⋆β, β ∈ Λ2(V), a, b ∈ R.

Then Λ2(V) is a complex vector space with dimC Λ
2(V) = 3. A C-basis of Λ2(V) is given for

example by (e12, e13, e14). We define for α, β ∈ Λ2(V)

gC(α, β) := 〈α, β〉 − i 〈α, ⋆β〉 .

Lemma 6.16. gC is a non-degenerate symmetric C-bilinear form on Λ2(V).

Proof. (a) gC is symmetric: We have

gC(β, α) = 〈β, α〉 − i 〈β, ⋆α〉 = 〈α, β〉 − i 〈⋆β, α〉 = 〈α, β〉 − i 〈α, ⋆β〉 = gC(α, β).

(b) gC is C-bilinear: It is clear that gC is R-bilinear. Because of the symmetry it is sufficient to

prove complex linearity with respect to the second argument. Since ⋆2
= −idΛ2(V) we have

gC(α, iβ) = 〈α, ⋆β〉 − i 〈α, ⋆ ⋆ β〉 = i(−i 〈α, ⋆β〉 + 〈α, β〉) = igC(α, β).

(c) gC is non-degenerate: If gC(α, β) = 0 for all α ∈ Λ2(V) then, taking real parts, we get

〈α, β〉 = 0 for all α ∈ Λ2(V). Since 〈·, ·〉 is non-degenerate we have β = 0. �

Thus gC is a C-bilinear extension of 〈·, ·〉 on Λ2(V).
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Remark 6.17. (1) An R-linear map A: Λ2(V) → Λ2(V) is C-linear if and only if we have

A ◦ ⋆ = ⋆ ◦ A.

(2) If A: Λ2(V)→ Λ2(V) is C-linear and self-adjoint with respect to 〈·, ·〉, then A is self-adjoint

with respect to gC. Namely we have for all α, β ∈ Λ2(V):

gC(Aα, β) = 〈Aα, β〉 − i 〈Aα, ⋆β〉 = 〈α, Aβ〉 − i 〈α, A ⋆ β〉
= 〈α, Aβ〉 − i 〈α, ⋆Aβ〉 = gC(α, Aβ).

Definition 6.18. An element β ∈ Λk(V) is called decomposable if there exist v1, ..., vk ∈ V

such that β = v1 ∧ ... ∧ vk.

Remark 6.19. If β ∈ Λk(V) \ {0} is decomposable, β = v1 ∧ ... ∧ vk, then v1, ..., vk are linearly

independent and they generate a k-dimensional linear subspace R〈v1, ..., vk〉 of V . Moreover β

determines an orientation on R〈v1, ..., vk〉. We have one-to-one-correspondences

R+ · β←→ R〈v1, ..., vk〉 with orientation,

R · β←→ R〈v1, ..., vk〉.

Proposition 6.20. Let α ∈ Λ2(V) where dim V = n ≥ 2. Then α is decomposable if and only

if α ∧ α = 0.

Proof. We prove the assertion by induction on n.

n = 2: The assertion holds since every α ∈ Λ2(V) is decomposable and satisfies α ∧ α = 0.

Inductive step: Let n ≥ 3.

”=⇒” If α is decomposable, i.e. α = v ∧ w, where v,w ∈ V , then α ∧ α = v ∧ w ∧ v ∧ w = 0.

”⇐=” Let α ∧ α = 0. We choose a basis b1, ..., bn of V and we write α = b1 ∧ v + β where

v ∈ W := R〈b2, ..., bn〉 and β ∈ Λ2(W). It follows that

0 = α ∧ α = (b1 ∧ v + β) ∧ (b1 ∧ v + β) = 2b1 ∧ v ∧ β + β ∧ β.

Since b1 ∧ v ∧ β and β ∧ β are linearly independent we have b1 ∧ v ∧ β = 0 and β ∧ β = 0. By

the inductive hypothesis β is decomposable, i.e. β = w ∧ z, where w, z ∈ W . It follows that

0 = b1 ∧ v ∧ β = b1 ∧ v ∧ w ∧ z.

Therefore the vectors b1, v,w, z are linearly dependent. Since v,w, z ∈ W and b1 < W we get that

v,w, z are linearly dependent.

Case 1: β = 0: Then α = b1 ∧ v is decomposable.

Case 2: β , 0, v = 0: Then α = β is decomposable.

Case 3: β , 0, v , 0: Since β , 0 the vectors w, z are linearly independent and we have

v ∈ R〈w, z〉. Since v , 0 there exists a vector v′ such that v, v′ form a basis of R〈w, z〉. Thus there
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is a constant c ∈ R \ {0} such that v ∧ v′ = cw ∧ z = cβ. It follows that

α = b1 ∧ v +
1

c
v ∧ v′ =

(
b1 −

1

c
v′
)
∧ v

and hence α is decomposable. �

Corollary 6.21. Every α ∈ Λ2(R3) is decomposable.

Proof. This follows from the lemma since α ∧ α ∈ Λ4(R3) = 0. �

Example 6.22. The proof of the lemma gives an explicit way of constructing the decomposition

of a decomposable element. For example we get

e12 + e23 + e13 =
1
2
(e1 + 2e2 + e3) ∧ (e1 + 4e2 + 3e3).

We also see that the corollary is not true for n ≥ 4. Namely α = e12 + e34 ∈ Λ2(R4) is not

decomposable since

α ∧ α = (e12 + e34) ∧ (e12 + e34) = e1212 + e1234 + e3412 + e3434 = 2e1234 , 0.

Lemma 6.23. Let n = 4, k = 2, σ = 1. Then ⋆ exchanges the causal types, i.e. if α is spacelike

and not zero (timelike, lightlike) then ⋆α is timelike (spacelike and not zero, lightlike).

Proof. We have 〈⋆β, ⋆β〉 = 〈⋆ ⋆ β, β〉 = − 〈β, β〉. �

Lemma 6.24. Let n = 4, k = 2, σ = 1 and let β ∈ Λ2(V). Then the following statements are

equivalent:

(i) β is decomposable,

(ii) ⋆β is decomposable,

(iii) β ⊥ ⋆β.

In particular by the one-to-one-correspondences in Remark 6.19 we can say that ⋆ is a map from

the set of all 2-dimensional planes in V to itself.

Proof. (i)⇐⇒ (iii): We have

β decomposable ⇐⇒ 0 = −β ∧ β = β ∧ ⋆ ⋆ β = 〈β, ⋆β〉ω⇐⇒ 〈β, ⋆β〉 = 0.
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(i)⇐⇒ (ii): By the equivalence of (i) and (iii) we have

β decomposable ⇐⇒ β ⊥ ⋆β⇐⇒ ⋆ ⋆ β ⊥ ⋆β⇐⇒ ⋆β decomposable,

where we have applied the equivalence of (i) and (iii) to ⋆β. �

If we think of the Hodge-⋆ operator as a map on the space of 2-dimensional subspaces of a

4-dimensional space, then Lemma 6.24 tells us that spacelike and timelike planes are mapped to

their orthogonal complement. What happens to lightlike planes in V under the action of ⋆?

Lemma 6.25. Let n = 4, k = 2, σ = 1 and let β ∈ Λ2(V) \ {0}. Then β is lightlike and

decomposable if and only if β = ℓ ∧ x, where ℓ ∈ V is lightlike, x ∈ V is spacelike and x ⊥ ℓ.

Proof. ”⇐=” It remains to prove that β is lightlike. Since 〈ℓ, ℓ〉 = 0 = 〈ℓ, x〉 we get

〈β, β〉 = 〈ℓ ∧ x, ℓ ∧ x〉 = 〈ℓ, ℓ〉 〈x, x〉 − 〈ℓ, x〉 〈x, ℓ〉 = 0.

”=⇒” Since β is decomposable we may write β = v ∧ w where v,w ∈ V . Since β , 0 we know

that v,w are linearly independent. By definition of 〈β, β〉 and since β is lightlike we have

0 = 〈β, β〉 = 〈v, v〉 〈w,w〉 − 〈v,w〉 〈w, v〉 = det


〈v, v〉 〈w, v〉

〈v,w〉 〈w,w〉

 .

Hence the restriction of 〈·, ·〉 to R · 〈v,w〉 is degenerate. By a basic result of linear algebra on

Lorentzian vector spaces there exist ℓ, x ∈ R · 〈v,w〉 such that ℓ is lightlike, x is spacelike and

ℓ ∧ x = v ∧ w = β. �

Lemma 6.26. Let n = 4, k = 2 and σ = 1 and let β = ℓ ∧ x ∈ Λ2(V) where ℓ is lightlike, x is

spacelike, x , 0, and ℓ ⊥ x. Then ⋆β = ℓ ∧ y where y is spacelike, |y| = |x| and y ⊥ x.

Proof. Since x is spacelike and not zero the vector space x⊥ has Lorentzian signature and its

dimension is 3. We choose an orthonormal basis e1, e2, e3 of x⊥ such that e1 is timelike, e2, e3

are spacelike and such that ℓ = a(e1 + e2) for some a ∈ R. We put e4 := x
|x| . Then e1, ..., e4 is an

orthonormal basis of V . Using our results from Example 6.13 we get

⋆β = ⋆(ℓ ∧ x) = ⋆(a(e1 + e2) ∧ |x|e4) = a|x|(⋆e14 + ⋆e24)

= a|x|(e23 + e13) = a|x|(e2 + e1) ∧ e3 = ℓ ∧ |x|e3

and we finish the proof by putting y := |x|e3. �
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6.3. Curvature as a complex linear endomorphism

In this section V will be a real vector space of dimension n = 4 equipped with a non-degenerate

inner product 〈·, ·〉 with σ = 1. We have seen that in this case the Hodge star operator ⋆ on

bivectors is self-adjoint and satisfies ⋆2
= −idΛ2(V).

Lemma 6.27. Let W be an algebraic curvature tensor on V with contraction C(W) = 0. If we

consider W as a symmetric bilinear form on Λ2(V), then we have

W(⋆ω,⋆η) = −W(ω, η)

for all ω, η ∈ Λ2(V).

Proof. Let (ei)
4
i=1

be an orthonormal basis of V . Then (ei j)1≤i< j≤4 is an orthonormal basis of

Λ
2(V). It suffices to prove the claim for ω = ei j, η = ekℓ, i < j, k < ℓ.

Case 1: i, j, k, ℓ are pairwise distinct.

Then ⋆ω = εη, where ε ∈ {±1}. Thus we have

W(⋆ω,⋆η) = W(εη, ε ⋆ ⋆ω) = −W(η, ω) = −W(ω, η).

Case 2: #({i, j} ∩ {k, ℓ}) = 1.

We may assume without loss of generality that i = k = 1, j = 2, ℓ = 3, otherwise we change the

numbering of the basis vectors ei. We also may assume that the orientation is given by −e1234,

otherwise we replace e4 by −e4. Then we have ω = e12, η = e13 and with εi = 〈ei, ei〉 we get by

Example 6.13 that ⋆ω = −ε1ε2e34 and ⋆η = ε1ε3e24. We conclude that

0 = C(W)(e2, e3) =

4∑

j=1

ε jW(e j, e2, e j, e3) = ε1W(e1, e2, e1, e3) + ε4W(e4, e2, e4, e3)

= ε1W(e12, e13) + ε4W(e24, e34).

We multiply both sides by ε1 and since ε1ε2ε3ε4 = −1 we get

0 = W(e12, e13) + ε1ε4W(e24, e34) = W(ω, η) + ε1ε4W(ε1ε3 ⋆ η,−ε1ε2 ⋆ ω)

= W(ω, η) − ε1ε2ε3ε4W(⋆η, ⋆ω) = W(ω, η) +W(⋆ω,⋆η).

Case 3: i = k, j = ℓ.

We may assume without loss of generality that i = k = 1, j = ℓ = 2. By hypothesis we have

0 = C(W)(e1, e1) = ε2W(e12, e12) + ε3W(e13, e13) + ε4W(e14, e14) (1)

0 = C(W)(e2, e2) = ε1W(e12, e12) + ε3W(e23, e23) + ε4W(e24, e24) (2)

0 = C(W)(e3, e3) = ε1W(e13, e13) + ε2W(e23, e23) + ε4W(e34, e34) (3)

0 = C(W)(e4, e4) = ε1W(e14, e14) + ε2W(e24, e24) + ε3W(e34, e34). (4)
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We consider ε1·(1) + ε2·(2) − ε3·(3) − ε4·(4) and we get

0 = 2ε1ε2W(e12, e12) − 2ε3ε4W(e34, e34).

We multiply both sides by 1
2
ε1ε2 and since ε1ε2ε3ε4 = −1 we get

0 = W(e12, e12) − ε1ε2ε3ε4W(e34, e34) = W(ω, η) +W(⋆ω,⋆η)

which finishes the proof. �

LetW be the endomorphism of Λ2(V) corresponding to W , i.e. for all ω, η ∈ Λ2(V) we have

〈Wω, η〉 = W(ω, η).

ThenW is self-adjoint with respect to 〈·, ·〉. If we assume moreover that C(W) = 0, then by the

previous lemma we get for all ω, η ∈ Λ2(V)

〈W(⋆ω), η〉 = W(⋆ω, η) = −W(⋆ ⋆ ω,⋆η) = W(ω,⋆η) = 〈Wω,⋆η〉 = 〈⋆Wω, η〉 .

ThusW◦ ⋆ = ⋆ ◦W, i.e.W is C-linear.

Corollary 6.28. Let n = 4, σ = 1. If W is an algebraic curvature tensor with C(W) = 0, then

W is a C-linear endomorphism of Λ2(V).

We choose an orthonormal basis (ei)
4
i=1

of V such that ε1 = −1, ε2 = ε3 = ε4 = 1. Then

(e12, e13, e14) form a complex basis of Λ2(V). We claim that the matrix ofW with respect to this

basis is complex and symmetric. In order to see this note first that (e12, e13, e14, ie12, ie13, ie14)

form a real basis of Λ2(V) which is orthonormal with respect to 〈·, ·〉 and that by definition of the

complex structure on Λ2(V) we have ⋆e1 j = ie1 j, j = 2, 3, 4. Thus for ω ∈ Λ2(V) we have by

definition of gC

ω =

4∑

j=2

(
〈
ω, e1 j

〉
e1 j +

〈
ω,⋆e1 j

〉
ie1 j) =

4∑

j=2

gC(ω, e1 j)e1 j.

Taking ω =We1k we see that the matrix entries ofW with respect to the basis (e1 j) j=2,3,4 are

given by (
gC(We1k, e1 j)

)
j,k=2,3,4

.

Now W is C-linear and self-adjoint with respect to 〈·, ·〉. By Remark 6.17 we conclude that

W is self-adjoint with respect to gC. It follows that the matrix of W with respect to the basis

(e12, e13, e14) is complex and symmetric.
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Lemma 6.29. Let n = 4, σ = 1 and let W be an algebraic curvature tensor on V with

C(W) = 0. Then we have trC(W) = 0, where trC(W) denotes the trace of W viewed as a

complex linear endomorphism of Λ2(V).

Proof. Let (ei)
4
i=1

be an orthonormal basis of V such that ε1 = −1, ε2 = ε3 = ε4 = 1. We have

trC(W) =
∑4

j=2 gC(We1 j, e1 j) and thus by definition of gC

Re(trC(W)) =

4∑

j=2

〈
We1 j, e1 j

〉
=

4∑

j=2

W(e1 j, e1 j) = C(W)(e1, e1) = 0

and

−Im(trC(W)) =

4∑

j=2

〈
We1 j, ⋆e1 j

〉
=

4∑

j=2

W(e1 j, ⋆e1 j) = W(e12, e34) +W(e13, e42) +W(e14, e23)

= W(e1, e2, e3, e4) +W(e1, e3, e4, e2) +W(e1, e4, e2, e3) = 0

by the Bianchi identity. �

We remark that complex symmetric matrices are not necessarily diagonalizable. For example

the matrix

A =


1 i

i −1



is symmetric. Its characteristic polynomial is χA(λ) = (1− λ)(−1− λ)− i2 = λ2 and thus 0 is the

only eigenvalue of A. However A is not diagonalizable since otherwise we would have A = 0.

6.4. The Petrov types

The idea of Petrov classification is to divide the trace-free C-linear endomorphisms of a 3-

dimensional complex vector space into types according to the shape of their Jordan normal

form. More precisely, let W be a C-linear endomorphism of a 3-dimensional complex vector

space whose trace is 0. We callW of type X ∈ {I, II, III,D,N,O} if its Jordan normal form has

the following shape:

IfW is diagonalizable, i.e.W has 3 Jordan blocks
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λ1

λ2

λ3





λ1

λ1

λ2





0

0

0



λ1, λ2, λ3 pairwise distinct λ1 , λ2 = −2λ1 λ1 = λ2 = λ3 = 0

λ1 + λ2 + λ3 = 0

type I type D type O

IfW has 2 or 1 Jordan block



λ1 1

λ1

λ2





0 1

0

0





0 1

0 1

0



λ1 , λ2 = −2λ1 λ1 = λ2 = λ3 = 0 λ1 = λ2 = λ3 = 0

type II type N type III

In the following table we list some more properties of these types.



6
.4

.
T

h
e

P
etro

v
ty

p
es

1
7

7

type I II III D N O

#(Jordan blocks) 3 2 1 3 2 3

diagonalizable yes no no yes no yes

distinct eigenvalues λ1, λ2, λ3 λ1, λ2 0 λ1, λ2 0 0

algebraic µalg(λ j) = 1 µalg(λ1) = 2 µalg(0) = 3 µalg(λ1) = 2 µalg(0) = 3 µalg(0) = 3

multiplicities µalg(λ2) = 1 µalg(λ2) = 1

geometric µgeo(λ j) = 1 µgeo(λ1) = 1 µgeo(0) = 1 µgeo(λ1) = 2 µgeo(0) = 2 µgeo(0) = 3

multiplicities µgeo(λ2) = 1 µgeo(λ2) = 1

rank 2 or 3 3 2 3 1 0

invertible depends yes no yes no no

nilpotent no no yes no yes yes

min{k | Ak
= 0} - - 3 - 2 1
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Let X, Y ∈ {I, II, III,D,N,O}. We say that type X degenerates to type Y if there is a sequence of

endomorphisms (Wn)n∈N all of type X and an endomorphismW of type Y such thatWn →W
with respect to some (hence every) matrix norm on C3×3. In this case we write X → Y . We

claim that the following degenerations are possible:

I

��   ❇
❇

❇

❇

❇

❇

❇

❇

II

��

// D

�� ��
❅

❅

❅

❅

❅

❅

❅

❅

III // N // O

(5)

This follows by considering (as ε→ 0)

I → D :



λ1 + ε

λ1 − ε

−2λ1


→



λ1

λ1

−2λ1



I → II :



λ1 1

ε λ1

−2λ1


→



λ1 1

λ1

−2λ1



II → D :



λ1 ε

λ1

−2λ1


→



λ1

λ1

−2λ1



II → III :



ε 1

ε 1

−2ε


→



0 1

0 1

0



D→ N :



2ε 1

−ε

−ε


→



0 1

0

0



D→ O :



ε

ε

−2ε


→



0

0

0
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III → N :



0 1

0 ε

0


→



0 1

0

0



N → O :



0 ε

0

0


→



0

0

0



One can show that type X degenerates to type Y if and only if Y can be reached from X by a

sequence of arrows in diagram (5).

We say that an algebraic curvature tensor W with C(W) = 0 has Petrov type X ∈
{I, II, III,D,N,O} if the corresponding C-linear endomorphismW has type X.

Remark 6.30. The Petrov type of an algebraic curvature tensor W with C(W) = 0 is indepen-

dent of the choice of orientation on V . Namely, if we reverse the orientation on V , then ⋆ is

replaced by −⋆, thus gC is replaced by gC. Therefore the matrix of W with respect to a basis

as above is replaced by its complex conjugate matrix. It follows that the type of W does not

change.

Definition 6.31. Let M be a 4-dimensional Lorentzian manifold. We say that M has Petrov

type X ∈ {I, II, III,D,N,O} at the point p ∈ M if the Weyl tensor W(p) has type X. If M has

the same type X at all its points we say that M has type X.

Example 6.32. For m > 0 we consider M = R × ((0, 2m) ∪ (2m,∞)) × S 2 equipped with the

Schwarzschild metric gm which in coordinates (t, r) on R × ((0, 2m) ∪ (2m,∞) and spherical

coordinates (ϑ, ϕ) on S 2 \ {0, 0,±1} is given by

gm = −h(r)dt2
+

1

h(r)
dr2
+ r2dϑ2

+ r2 sin2 ϑdϕ2, h(r) := 1 − 2m

r
.

We know that Ric = 0 and thus the Riemann curvature tensor R is equal to the Weyl curvature

tensor W everywhere. For every point p ∈ M whose S 2-component is different from {0, 0,±1}
we consider the following orthonormal basis (Ei)

4
i=1

of TpM with εi = 〈Ei, Ei〉:

r > 2m r < 2m

E1 := |h(r)|−1/2∂t ε1 = −1 ε1 = 1

E2 := |h(r)|1/2∂r ε2 = 1 ε2 = −1

E3 := 1
r
∂ϑ ε3 = 1 ε3 = 1

E4 := 1
r sin ϑ∂ϕ ε4 = 1 ε4 = 1
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We denote by (ei)
4
i=1

the basis of T ∗pM dual to this basis. One can show that the endomorphism

W of Λ2T ∗pM which corresponds to W(p) has the eigenvalues

λ1 = −
m

r3
, λ2 =

2m

r3

and that the eigenspaces are

Eig(W, λ1) = spanR{dt ∧ dϑ, dt ∧ dϕ, dr ∧ dϑ, dr ∧ dϕ} = spanR{e13, e14, e23, e24},
Eig(W, λ2) = spanR{dt ∧ dr, dϑ ∧ dϕ} = spanR{e12, e34}.

If we consider Λ2T ∗pM as a complex vector space then the endomorphismW is C-linear and its

matrix with respect to a basis of eigenvectors is given by

r > 2m r < 2m

with respect to the basis e12, e13, e14: with respect to the basis e21, e23, e24:


2m
r3

−m
r3

−m
r3





2m
r3

−m
r3

−m
r3



In particular, the Schwarzschild metric gm has Petrov type D. We recall that every family of

Kerr metrics (g(m,a))a>0 tends to the Schwarzschild metric gm as a → 0. From the above result

on possible degenerations it follows that every Kerr metric has type I, II or D for small a. In

fact one can show that every Kerr metric has type D and one can compute the eigenvalues ofW
explicitly (see e.g. Corollary 5.4.4 in [8]).

Lemma 6.33. Let Ṽ be a 3-dimensional complex vector space equipped with a non-

degenerate symmetric C-bilinear form gC. LetW be a C-linear endomorphism of Ṽ which is

symmetric with respect to gC and satisfies trC(W) = 0. Then there exists a basis ω1, ω2, ω3 of

Ṽ with respect to which we have

type matrix of gC matrix ofW

I,D,O



1

1

1





λ1

λ2

λ3



II,N



1 0 0

0 0 1

0 1 0





λ1

λ2 1

λ2



III



0 0 1

0 1 0

1 0 0





0 1

0 1

0
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Proof. a) We first prove that eigenspaces corresponding to different eigenvalues are gC-

orthogonal. Namely let ω, η ∈ Ṽ be eigenvectors, Wω = λω, Wη = µη, λ , µ. It follows

that

λgC(ω, η) = gC(λω, η) = gC(Wω, η) = gC(ω,Wη) = µgC(ω, η).

Thus we get (λ − µ)gC(ω, η) = 0 and since λ , µ we obtain gC(ω, η) = 0.

b) We claim: If W is diagonalizable then the restriction of gC to every eigenspace of W is

non-degenerate.

Namely Ṽ is the direct sum of the eigenspaces of W since W is diagonalizable. Let λ be an

eigenvalue ofW. Then we have

dim
⊕

µ,λ

Eig(W, µ) = dim Ṽ − dim Eig(W, λ) = dim Eig(W, λ)⊥.

By part a) we have ⊕

µ,λ

Eig(W, µ) ⊂ Eig(W, λ)⊥

and since the dimensions agree the two spaces are equal. Assume that the restriction of gC to

Eig(W, λ) is degenerate. Then we have Eig(W, λ)⊥ ∩ Eig(W, λ) , {0} and thus there exists

v ∈ Eig(W, λ) ∩
⊕

µ,λ

Eig(W, µ), v , 0,

which is impossible. This concludes the proof of our claim.

c) Consider types I,D,O. ThenW is diagonalizable. For every eigenspace ofW we can find

an orthonormal basis by part b). Note that for every vector v of this basis we may assume that

gC(v, v) = +1 since we can multiply v by a complex number. The collection of all these basis

vectors gives an orthonormal basis of Ṽ with respect to which the matrix ofW has the desired

form.

d) Consider type II, i.e. λ1 , λ2. Let ω̃1, ω̃2, ω̃3 be a basis of Ṽ such that the matrix of W
with respect to this basis has the form stated above. In particular ω̃1 is an eigenvector of W
corresponding to λ1 and ω̃2 is an eigenvector of W corresponding to λ2. Thus by part a) we

have gC(ω̃1, ω̃2) = 0. Furthermore we compute

λ1gC(ω̃1, ω̃3) = gC(Wω̃1, ω̃3) = gC(ω̃1,Wω̃3) = gC(ω̃1, ω̃2 + λ2ω̃3)

= gC(ω̃1, ω̃2) + λ2gC(ω̃1, ω̃3) = λ2gC(ω̃1, ω̃3).

Since λ1 , λ2 we get gC(ω̃1, ω̃3) = 0. We conclude that gC(ω̃1, ω̃1) , 0 since gC is non-

degenerate. We define ω1 := aω̃1 where a ∈ C is such that gC(ω1, ω1) = a2gC(ω̃1, ω̃1) = 1. Next

we compute

λ2gC(ω̃2, ω̃3) = gC(Wω̃2, ω̃3) = gC(ω̃2,Wω̃3) = gC(ω̃2, ω̃2 + λ2ω̃3)

= gC(ω̃2, ω̃2) + λ2gC(ω̃2, ω̃3).



182 6. Petrov classification

It follows that gC(ω̃2, ω̃2) = 0 and since gC is non-degenerate we conclude that gC(ω̃2, ω̃3) , 0.

We define ω2 := bω̃2 and ω̂3 := bω̃3 where b ∈ C is such that gC(ω2, ω̂3) = b2gC(ω̃2, ω̃3) = 1.

Note that we haveWω̂3 = ω2 + λ2ω̂3, i.e. the matrix ofW with respect to the basis ω1, ω2, ω̂3

is still as claimed above. Finally we put ω3 := ω̂3 + cω2 where c ∈ C is such that

gC(ω3, ω3) = gC(ω̂3, ω̂3) + 2cgC(ω̂3, ω2) + c2gC(ω2, ω2) = gC(ω̂3, ω̂3) + 2c
!
= 1.

Then the matrix of gC with respect to ω1, ω2, ω3 has the desired form. Note that we haveWω3 =

ω2 + λ2ω̂3 + cλ2ω2 = ω2 + λ2ω3, i.e. the matrix ofW with respect to ω1, ω2, ω3 is the same as

before.

d) Consider type N, i.e. λ1 = λ2 = 0. Let ω̃1, ω̃2, ω̃3 be a basis of Ṽ such that the matrix ofW
with respect to this basis is as claimed above. SinceWω̃1 =Wω̃2 = 0 we get

0 = gC(Wω̃1, ω̃3) = gC(ω̃1,Wω̃3) = gC(ω̃1, ω̃2),

0 = gC(Wω̃2, ω̃3) = gC(ω̃2,Wω̃3) = gC(ω̃2, ω̃2)

and since gC is non-degenerate we conclude that gC(ω̃2, ω̃3) , 0. After multiplying both ω̃2, ω̃3

by a common factor we may assume that gC(ω̃2, ω̃3) = 1 and we still have Wω̃3 = ω̃2. If we

had gC(ω̃1, ω̃1) = 0, then the restriction of gC to kerW×kerW would be identically zero. Then

we could find a linear combination of ω̃1, ω̃2 which is gC-orthogonal to ω̃3 which is impossible

since gC is non-degenerate. Thus we have gC(ω̃1, ω̃1) , 0 and after multiplying ω̃1 by a complex

number we may assume that gC(ω̃1, ω̃1) = 1. Next we put

ω2 := ω̃2, ω3 := ω̃3 + aω̃2, ω1 := ω̃1 + bω̃2

where we choose a, b ∈ C such that gC(ω1, ω3) = gC(ω3, ω3) = 0. This is possible since we have

0
!
= gC(ω3, ω3) = gC(ω̃3, ω̃3) + 2agC(ω̃3, ω̃2) + a2gC(ω̃2, ω̃2) = gC(ω̃3, ω̃3) + 2a

and

0
!
= gC(ω1, ω3) = gC(ω̃1 + bω̃2, ω̃3 + aω̃2)

= gC(ω̃1, ω̃3) + agC(ω̃1, ω̃2) + bgC(ω̃2, ω̃3) + abgC(ω̃2, ω̃2) = gC(ω̃1, ω̃3) + b.

We note thatWω3 =Wω̃3 + aWω̃2 = ω̃2 = ω2 and therefore the matrix ofW with respect to

the new basis is the same as before. We also note that

gC(ω1, ω1) = 1, gC(ω2, ω3) = 1, gC(ω1, ω2) = gC(ω2, ω2) = 0

and thus the matrix of gC with respect to the new basis has the desired form.

e) Consider type III. Let ω̃1, ω̃2, ω̃3 be a basis of Ṽ such that the matrix of W with respect

to this basis is as claimed above. Note that we have Wω̃3 = ω2, Wω̃2 = ω1, Wω̃1 = 0 and

W3
= 0. It follows that

gC(ω̃1, ω̃1) = gC(W2ω̃3,W2ω̃3) = gC(W4ω̃3, ω̃3) = 0

gC(ω̃1, ω̃2) = gC(W2ω̃3,Wω̃3) = gC(W3ω̃3, ω̃3) = 0.
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Therefore since gC is non-degenerate we have gC(ω̃1, ω̃3) , 0. After multiplying the vectors

ω̃1, ω̃2, ω̃3 by the same factor we may assume that gC(ω̃1, ω̃3) = 1. Note that with respect to the

new basis the matrix ofW is the same as before. It follows that

gC(ω̃2, ω̃2) = gC(Wω̃3,Wω̃3) = gC(W2ω̃3, ω̃3) = gC(ω̃1, ω̃3) = 1.

Next we define

ω1 := ω̃1, ω2 := ω̃2 + aω̃1, ω3 := ω̃3 + aω̃2 + bω̃1

where we choose a, b ∈ C such that gC(ω2, ω3) = 0 = gC(ω3, ω3). This is possible since we have

0
!
= gC(ω2, ω3) = gC(ω̃2 + aω̃1, ω̃3 + aω̃2 + bω̃1)

= gC(ω̃2, ω̃3) + agC(ω̃1, ω̃3) + agC(ω̃2, ω̃2) + a2gC(ω̃1, ω̃2) + bgC(ω̃2, ω̃1) + abgC(ω̃1, ω̃1)

= gC(ω̃2, ω̃3) + 2a

and

0
!
= gC(ω3, ω3)

= gC(ω̃3, ω̃3) + 2agC(ω̃3, ω̃2) + 2bgC(ω̃3, ω̃1)

+ a2gC(ω̃2, ω̃2) + 2abgC(ω̃2, ω̃1) + b2gC(ω̃1, ω̃1) = gC(ω̃3, ω̃3) + 2b − 3a2.

We note that with respect to ω1, ω2, ω3 the matrix ofW is the same as before. We also note that

gC(ω1, ω3) = gC(ω2, ω2) = 1, gC(ω1, ω1) = gC(ω1, ω2) = 0.

Therefore the matrix of gC with respect to the new basis has the desired form. �

6.5. Principal null vectors and bivectors

Definition 6.34. Let V be a 4-dimensional real vector space with a non-degenerate inner prod-

uct 〈·, ·〉 with σ = 1. An element β ∈ Λ2(V) \ {0} is called gC-null if gC(β, β) = 0.

Remark 6.35. Let β ∈ Λ2(V) \ {0}. We have

β is gC-null ⇐⇒ Re (gC(β, β)) = Im (gC(β, β)) = 0

⇐⇒ 〈β, β〉 = 〈β, ⋆β〉 = 0

⇐⇒ β is lightlike and decomposable.

Let β be gC-null. By Lemma 6.25 we have β = ℓ ∧ x, where ℓ is lightlike, x is spacelike and

ℓ ⊥ x. From Lemma 6.26 it follows that ⋆β = ℓ ∧ y, where y is spacelike, y ⊥ ℓ, y ⊥ x

and |y| = |x|. We have also seen that the line R · ℓ is uniquely determined by β, thus we write

N(β) := R · ℓ.
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Definition 6.36. An element β ∈ Λ2(V) \ {0} is called a principal null bivector of W if

gC(β, β) = 0 and gC(Wβ, β) = 0.

Remark 6.37. If β is gC-null and an eigenvector ofW, then β is a principal null bivector, since

gC(Wβ, β) = λgC(β, β) = 0. On the other hand we will soon find principal null bivectors which

are not eigenvectors ofW.

Lemma 6.38. Let β, β′ be gC-null. Then we have N(β) = N(β′) if and only if there exists

z ∈ C∗ such that β′ = zβ.

Proof. ”⇐=” Let β′ = zβ, where β = ℓ ∧ x, z = a + ib. Then

β′ = (a + ib)ℓ ∧ x = aℓ ∧ x + b ⋆ (ℓ ∧ x) = aℓ ∧ x + bℓ ∧ y = ℓ ∧ (ax + by)

where ax + by ⊥ ℓ and ax + by is spacelike. It follows that N(β′) = R · ℓ = N(β).

”=⇒” Let N(β) = N(β′) = R · ℓ. Then we have β = ℓ ∧ x, β′ = ℓ ∧ x′ and ⋆β = ℓ ∧ y where

x, x′, y are spacelike and x, x′, y ⊥ ℓ. The vectors x, y, ℓ form a basis of ℓ⊥ and thus there exist

a, b, c ∈ R such that x′ = ax + by + cℓ. It follows that β′ = aℓ ∧ x + bℓ ∧ y = (a + ib)β. �

Hence we have a 1 : 1-correspondence

{C · β | β ∈ Λ2(V) is gC-null} ←→ {R · ℓ | ℓ ∈ V is lightlike}

where the maps C · β 7→ N(β) and R · ℓ 7→ C · (ℓ∧ x) for some spacelike x , 0, x ⊥ ℓ, are inverse

to each other.

Definition 6.39. (1) A vector ℓ ∈ V is called a principal null vector of W if there exists

x ∈ V such that ℓ∧ x is a principal null bivector ofW. In this case the line R · ℓ is called

a principal null direction of W .

(2) LetW , 0. The multiplicity of the principal null bivector β is given by

m =



1, if β is not an eigenvector ofW,

2, if β is an eigenvector ofW for an eigenvalue λ , 0,

3, if β ∈ ker(W) and dimC ker(W) = 1,

4, if β ∈ ker(W) and dimC ker(W) = 2.

The multiplicity of a principal null vector of W is defined as the multiplicity of the

corresponding principal null bivector ofW.
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Proposition 6.40. LetW , 0. Depending on the Petrov type,W has the following principal

null bivectors (pnb’s) and no further ones (up to multiplication by a complex number):

type I: 4 pnb’s each with multiplicity m = 1;

type II: 1 pnb with m = 2 and 2 pnb’s each with m = 1;

type III: 1 pnb with m = 3 and 1 pnb with m = 1;

type D: 2 pnb’s each with m = 2;

type N: 1 pnb with m = 4.

Note that the sum of the multiplicities equals 4 in each case. The list shows that the Petrov types

can be characterized by in terms of the principal null bivectors ofW.

Proof. Let ω1, ω2, ω3 be a basis of Λ2(V) as in Lemma 6.33.

a) Consider type N. From Lemma 6.33 we see that β := ω2 is gC-null and β ∈ ker(W). For type

N we have dim ker(W) = 2 and thus β = ω2 is a principal null bivector with m = 4. Conversely,

assume that β = aω1 + bω2 + cω3 is a principal null bivector. Then we have

0 = gC(β, β) = a2
+ 2bc, 0 = gC(Wβ, β) = gC(cω2, β) = c2

and therefore c = 0, a = 0 and β = bω2.

b) Consider type II. Let β = aω1 + bω2 + cω3 and assume that β is a principal null bivector.

Then we have

0 = gC(β, β) = a2
+ 2bc and

0 = gC(Wβ, β) = gC(aλ1ω1 + bλ2ω2 + cλ3ω3 + cω2, aω1 + bω2 + cω3) = a2λ1 + 2λ2bc + c2.

Substituting the first equation into the second one and using that λ1 = −2λ2 we get

0 = c2
+ 6λ2bc = c(c + 6λ2b).

Case 1: c = 0. Then we get a = 0 and β = bω2 is a principal null bivector with m = 2.

Case 2: c , 0. Then c = −6λ2b and thus a2
= −2bc = 12λ2b2. It follows that a = ±b

√
12λ2 and

thus

β = ±b
√

12λ2ω1 + bω2 − 6λ2bω3.

This gives 2 linearly independent vectors since λ2 , 0 and both have m = 1.

Conversely, every vector β of this form is a principal null bivector.

c) Consider type I. Assume that β is a principal null bivector. Then we get

0 = gC(β, β) = a2
+ b2
+ c2,

0 = gC(Wβ, β) = λ1a2
+ λ2b2

+ λ3c2.
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We multiply the first equation by λ1 and subtract it from the second equation to get

0 = (λ2 − λ1)b2
+ (λ3 − λ1)c2 and thus b = ±c

√
λ3 − λ1

λ1 − λ2
.

We substitute this in the first equation and we get

0 = a2
+
λ3 − λ1

λ1 − λ2
c2
+ c2
= a2

+ c2 λ3 − λ2

λ1 − λ2
and thus a = ±c

√
λ2 − λ3

λ1 − λ2
.

Therefore we have

β = ±c

√
λ2 − λ3

λ1 − λ2
ω1 ± c

√
λ3 − λ1

λ1 − λ2
ω2 + cω3

and this gives 4 vectors none of which is a complex multiple of another one since the λ j are

pairwise distinct. Conversely, every vector β of this form is a principal null bivector.

d) The assertion on types III,D is left as an exercise. �

Definition 6.41. Let (V, 〈·, ·〉) be a 4-dimensional Lorentzian vector space. An ordered basis

(k, ℓ, x, y) of V is called a real null tetrad if the matrix of 〈·, ·〉with respect to (k, ℓ, x, y) is given

by 

0 −1

−1 0

1 0

0 1



.

In other words: k, ℓ are lightlike, 〈k, ℓ〉 = −1, x, y are spacelike and orthonormal and R〈k, ℓ〉 ⊥
R〈x, y〉.

Example 6.42. If e0, e1, e2, e3 is an orthonormal basis of V with ε0 = −1, then

k :=
1
√

2
(e0 + e1), ℓ :=

1
√

2
(e0 − e1), x := e2, y := e3

is a real null tetrad.

Remark 6.43. (1) For every real null tetrad there exists an orthonormal basis e0, ..., e3 as in

the example.

(2) Given a system of 1, 2 or 3 vectors satisfying the relations of a real null tetrad, then this

system can be completed to a real null tetrad.
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(3) Let (k, ℓ, x, y) be a real null tetrad on V . Then k ∧ ℓ, k ∧ x, k ∧ y, ℓ ∧ x, ℓ ∧ y, x ∧ y form a

real basis of Λ2(V) and the matrix of the induced inner product 〈·, ·〉 on Λ2(V) with respect

to this basis is given by 

−1 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 0 0 1



.

Proposition 6.44. Let V be a 4-dimensional Lorentzian vector space and let W , 0 be an

algebraic curvature tensor on V with C(W) = 0. Let ℓ ∈ V be lightlike.

(a) ℓ is a principal null vector of W if and only if W(ℓ, x, ℓ, y) = 0 for all x, y ⊥ ℓ.
(b) ℓ is a principal null vector of W of multiplicity m ≥ 2 if and only if W(ℓ, x, ℓ, y) = 0 for

all x ⊥ ℓ and for all y ∈ V.

(c) ℓ is a principal null vector of W of multiplicity m ≥ 3 if and only if W(ℓ, x, ·, ·) = 0 for

all x ⊥ ℓ.
(d) ℓ is a principal null vector of W of multiplicity m ≥ 4 if and only if W(ℓ, ·, ·, ·) = 0.

Proof. (a) ”⇐=” Let x be spacelike, x , 0, x ⊥ ℓ. Put β := ℓ ∧ x. Then β is gC-null and

N(β) = R · ℓ. We write ⋆β = ℓ ∧ y. Then by hypothesis we have

0 = W(ℓ, x, ℓ, x) = W(ℓ ∧ x, ℓ ∧ x) = 〈Wβ, β〉 = Re(gC(Wβ, β)),

0 = W(ℓ, x, ℓ, y) = W(ℓ ∧ x, ℓ ∧ y) = 〈Wβ, ⋆β〉 = −Im(gC(Wβ, β)).

Therefore we have gC(Wβ, β) = 0 and thus β is a principal null bivector.

”=⇒” Let ℓ be a principal null vector of W . By definition there exists x0 ∈ V such that β := ℓ∧ x0

is a principal null bivector of W and x0 is spacelike, x0 , 0, x0 ⊥ ℓ. We write ⋆β = ℓ ∧ y0.

Then we have

0 = gC(Wβ, β) = 〈Wβ, β〉 − i 〈Wβ, ⋆β〉 = W(ℓ, x0, ℓ, x0) − iW(ℓ, x0, ℓ, y0)

and thus W(ℓ, x0, ℓ, x0) = 0 = W(ℓ, x0, ℓ, y0). Note that the vectors ℓ, x0, y0 form a basis of ℓ⊥.

Therefore W(ℓ, x0, ℓ, y) = 0 for all y ⊥ ℓ. Now the vector ⋆β = ℓ ∧ y0 is also a principal null

bivector ofW. Thus by the same argument we get W(ℓ, y0, ℓ, y) = 0 for all y ⊥ ℓ. Using again

that the vectors ℓ, x0, y0 form a basis of ℓ⊥ we get W(ℓ, x, ℓ, y) = 0 for all x, y ⊥ ℓ.
(b) ”=⇒” Let ℓ be a principal null vector with m ≥ 2. By definition there exists a spacelike

x0 ∈ V , x0 ⊥ ℓ, x0 , 0 such that β := ℓ∧ x0 is a principal null bivector and an eigenvector ofW.

Then there exists a spacelike y0 ∈ V , y0 ⊥ ℓ, y0 ⊥ x, |y0| = |x0| such that ⋆β = ℓ ∧ y0. Without
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loss of generality we may assume |x0| = |y0| = 1. We extend the system ℓ, x0, y0 to a real null

tetrad k, ℓ, x0, y0. Now let y ∈ V and write y = ak + bℓ + cx0 + dy0. Using part (a) we get

W(ℓ, x0, ℓ, y) = aW(ℓ, x0, ℓ, k) + cW(ℓ, x0, ℓ, x0) + dW(ℓ, x0, ℓ, y0)

= aW(ℓ, x0, ℓ, k) = a 〈Wβ, ℓ ∧ k〉 = aλ 〈ℓ ∧ x0, ℓ ∧ k〉 = 0.

In the same way we get W(ℓ, y0, ℓ, y) = 0 and since the vectors ℓ, x0, y0 form a basis of ℓ⊥ we get

W(ℓ, x, ℓ, y) = 0 for all x ⊥ ℓ and all y ∈ V .

”⇐=” Let x be spacelike, x , 0, x ⊥ ℓ. Put β := ℓ ∧ x and write ⋆β = ℓ ∧ y. By the proof of

part (a), β is a principal null bivector. We extend the system ℓ, x, y to a real null tetrad k, ℓ, x, y.

By hypothesis for all z ∈ V we have

0 = W(ℓ, x, ℓ, z) = 〈Wβ, ℓ ∧ z〉 and 0 = W(ℓ, y, ℓ, z) = 〈W ⋆ β, ℓ ∧ z〉

and therefore

Wβ,W ⋆ β ∈ R〈ℓ ∧ x, ℓ ∧ y, k ∧ ℓ〉⊥ = R〈ℓ ∧ x, ℓ ∧ y, x ∧ y〉.

It follows that

〈Wβ, x ∧ y〉 = ± 〈Wβ, ⋆(k ∧ ℓ)〉 = ± 〈⋆Wβ, k ∧ ℓ〉 = ± 〈W ⋆ β, k ∧ ℓ〉 = 0

and thereforeWβ ∈ R〈ℓ ∧ x, ℓ ∧ y〉 = R〈β, iβ〉 is an eigenvector ofW.

(c) By definition ℓ is a principal null vector of W if and only if there is a spacelike x ∈ V \ {0},
x ⊥ ℓ such that β := ℓ ∧ x is a principal null bivector ofW. Now we have

Wβ = 0⇐⇒ 〈Wβ, α〉 = 0 for all α ∈ Λ2(V)

⇐⇒ 0 = 〈Wβ, u ∧ v〉 = W(ℓ, x, u, v) for all u, v ∈ V.

(d) ”⇐=” Let W(ℓ, ·, ·, ·) = 0. Then there is a spacelike x ∈ V , |x| = 1, x ⊥ ℓ such that β = ℓ ∧ x

is a principal null bivector, β ∈ kerW. In particular we have m ≥ 3. We extend the system ℓ, x

to a real null tetrad ℓ, k, x, y. Then β′ := ℓ ∧ k is not a complex multiple of β and we have

〈Wβ′, u ∧ v
〉
= W(ℓ, k, u, v) = 0

for all u, v ∈ V . It follows thatWβ′ = 0 and thus dimC kerW ≥ 2, i.e. m ≥ 4.

”=⇒” Let β = ℓ∧ x be a principal null bivector ofW of multiplicity m ≥ 4. By Proposition 6.40

we get that W has type N. Let ω1, ω2, ω3 be the basis of V from Lemma 6.33. Since β ∈ kerW
there exist a, b ∈ R such that β = aω1 +bω2. Since gC(β, β) = 0 we get 0 = a2 and thus β = bω2.

Let β′ ∈ Λ2(V)\{0} such thatWβ′ = 0, gC(β, β′) = 0 and such that β, β′ are linearly independent

over C. We extend the system ℓ, x to a real null tetrad k, ℓ, x, y. Then k ∧ ℓ, ℓ ∧ x, k ∧ x form a

complex basis of Λ2(V). We write

β′ = z1k ∧ ℓ + z2ℓ ∧ x + z3k ∧ x, z1, z2, z3 ∈ C.
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We may assume that z2 = 0, since otherwise we replace β′ by β′ − z2ℓ ∧ x and we still have that

Wβ′ = 0, gC(β, β′) = 0 and β, β′ are linearly independent over C. Using Remark 6.43 and using

that ⋆(ℓ ∧ x) = ±ℓ ∧ y we get

0 = gC(β, β′) = z1gC(k ∧ ℓ, ℓ ∧ x) + z3gC(k ∧ x, ℓ ∧ x)

= z1[〈k ∧ ℓ, ℓ ∧ x〉︸          ︷︷          ︸
=0

±i 〈k ∧ ℓ, ℓ ∧ y〉︸         ︷︷         ︸
=0

] + z3[〈k ∧ x, ℓ ∧ x〉︸          ︷︷          ︸
=−1

±i 〈k ∧ x, ℓ ∧ y〉︸          ︷︷          ︸
=0

] = −z3.

Thus we may assume that β′ = k ∧ ℓ. By part (c) we have W(ℓ, u, ·, ·) = 0 for all u ⊥ ℓ, i.e. for

all u ∈ R〈ℓ, x, y〉. In addition we have

W(ℓ, k, ·, ·) = 〈W(ℓ ∧ k), · ∧ ·〉 = − 〈Wβ′, · ∧ ·〉 = 0

and thus W(ℓ, ·, ·, ·) = 0. �

Corollary 6.45 (Bel-Sachs criteria). Let W , 0 be an algebraic curvature tensor on a

4-dimensional Lorentzian vector space V. Then we have

W has type N ⇐⇒∃ℓ ∈ V lightlike such that W(ℓ, ·, ·, ·) = 0;

W has type III ⇐⇒W does not have type N and ∃ℓ ∈ V lightlike such that W(ℓ, x, ·, ·) = 0

for all x ⊥ ℓ;
⇐⇒∃ℓ1, ℓ2 ∈ V lightlike and linearly independent such that

W(ℓ1, x, ·, ·) = 0 for all x ⊥ ℓ1 and W(ℓ2, x, ℓ2, y) = 0 for all x, y ⊥ ℓ2;

W has type D⇐⇒∃ℓ1, ℓ2 ∈ V lightlike and linearly independent such that

W(ℓ j, x, ℓ j, ·) = 0 for all x ⊥ ℓ j, j = 1, 2;

W has type II ⇐⇒∃ℓ1, ℓ2, ℓ3 ∈ V lightlike and pairwise linearly independent such that

W(ℓ1, x, ℓ1, ·) = 0 for all x ⊥ ℓ1 and W(ℓ j, x, ℓ j, y) = 0 for all x, y ⊥ ℓ j,

j = 2, 3;

W has type I ⇐⇒∃ℓ1, ℓ2, ℓ3, ℓ4 ∈ V lightlike and pairwise linearly independent such that

W(ℓ j, x, ℓ j, y) = 0 for all x, y ⊥ ℓ j, j = 1, ..., 4.

6.6. The optical scalars

We want to apply the results of the previous section in order to study lightlike geodesics on a

spacetime M.

Definition 6.46. A vector field X on a semi-Riemannian manifold M is called a geodesic

vector field if its integral curves are geodesics, i.e. if ∇XX = 0.
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Let ℓ be a geodesic lightlike vector field. Since 〈ℓ, ℓ〉 ≡ 0 we get for all X ∈ T M

0 = ∂X 〈ℓ, ℓ〉 = 2 〈∇Xℓ, ℓ〉 and thus ∇Xℓ ⊥ ℓ.

Therefore the map X 7→ ∇Xℓ restricts to the map

ℓ⊥ → ℓ⊥, X 7→ ∇Xℓ.

At every point of M we have ℓ ∈ ℓ⊥ and we consider the quotient vector space ℓ⊥/ℓ. Since we

have ∇ℓℓ = 0 the above map induces a well defined map

ℓ⊥/ℓ //

D
""❋

❋

❋

❋

❋

❋

❋

❋

ℓ⊥

��

[X]
✤ // ∇Xℓ

❴

��

ℓ⊥/ℓ [∇Xℓ]

.

Here the brackets [·] denote the equivalence class modulo ℓ.

At every point of M the vector space ℓ⊥/ℓ has real dimension 2. The Lorentzian metric restricted

to ℓ⊥ is positive semidefinite and degenerate and ℓ is precisely the null space. Thus we get an

induced metric 〈·, ·〉 on ℓ⊥/ℓ which is positive definite. Every algebraic complement of R〈ℓ〉 in

ℓ⊥ is isomorphic to ℓ⊥/ℓ. In particular, there is no canonical way to identify ℓ⊥/ℓ with a linear

subspace of ℓ⊥.

Definition 6.47. The vector bundle on M with fibers ℓ⊥/ℓ is called the screen bundle on M.

Let [x], [y] be an orthonormal basis of ℓ⊥/ℓ. With respect to this basis the map D defined above

has the matrix 
ℓx,x ℓy,x

ℓx,y ℓy,y



where ℓy,x := 〈∇xℓ, y〉. We define Dt as the adjoint endomorphism of D with respect to 〈·, ·〉. Now

we decompose D into a symmetric and an antisymmetric part and we decompose the symmetric

part further into a term with vanishing trace and a multiple of the identity, i.e.

D = 1
2
(D + Dt) + 1

2
(D − Dt)

=
1
2
tr(D)id + 1

2
(D + Dt − tr(D)id) + 1

2
(D − Dt)

=


θ 0

0 θ

 +
1
2


ℓx,x − ℓy,y ℓx,y + ℓy,x

ℓx,y + ℓy,x ℓy,y − ℓx,x

 +


0 ω

−ω 0



=


θ 0

0 θ

 +
1
2


−Reσ Imσ

Imσ Reσ

 +


0 ω

−ω 0
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where we have defined

θ := 1
2
tr(D) = 1

2
(ℓx,x + ℓy,y) (expansion)

ω := 1
2
(ℓy,x − ℓx,y) (rotation or twist)

σ := 1
2
(ℓy,y − ℓx,x) +

i

2
(ℓy,x + ℓx,y) (complex shear).

The functions θ, ω, σ are called the optical scalars of ℓ. We note that θ is independent of

the choice of basis of ℓ⊥/ℓ since θ is the trace of an endomorphism of ℓ⊥/ℓ. Moreover since

det(1
2
(D−Dt)) = ω2 we conclude that ω2 is independent of the choice of basis. If we equip ℓ⊥/ℓ

with an orientation and if we consider only positively oriented orthonormal bases [x], [y] then

the sign of ω is fixed and hence ω is also independent of the choice of basis.

We can interpret the optical scalars geometrically as follows. At some point p of M we identify

ℓ⊥/ℓ with a vector subspace of ℓ⊥. Then for all points q on the integral curve of ℓ through p we

regard the endomorphism D of ℓ⊥/ℓ at q as an endomorphism of ℓ⊥/ℓ at p via parallel transport

along the integral curve. The optical scalars describe infinitesimal deformations of a small disk

in ℓ⊥/ℓ at p. The number θ describes expansion or shrinking of the disc, ω describes rotation of

the disc and σ describes the deformation of the disc into an ellipse of the same area.

Θ > 0 Θ < 0 σ , 0

ω > 0 ω < 0

Definition 6.48. Let M be a smooth manifold. A vector subbundle V of T M is called inte-

grable if for every x ∈ M there exists a submanifold Q of M such that x ∈ Q and such that for

all p ∈ Q we have TpQ = Vp.

By Frobenius’ theorem V is integrable if and only if for all vector fields X, Y on M which are

sections of V the vector field [X, Y] is also a section of V .
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Lemma 6.49. The vector subbundle ℓ⊥ of T M is integrable if and only if ω = 0.

Proof. The vector fields ℓ, x, y form a basis of ℓ⊥ at every point of M, where [x], [y] form an

orthonormal basis of ℓ⊥/ℓ. We get

〈∇xℓ, y〉 = ∂x 〈ℓ, y〉 − 〈ℓ,∇xy〉 = − 〈ℓ,∇xy〉

and similarly
〈
∇yℓ, x

〉
= −

〈
ℓ,∇yx

〉
. Thus we obtain

ω = 0⇐⇒ 〈∇xℓ, y〉 =
〈
∇yℓ, x

〉
⇐⇒ 〈ℓ,∇xy〉 =

〈
ℓ,∇yx

〉

⇐⇒ 0 =
〈
ℓ,∇xy − ∇yx

〉
= 〈ℓ, [x, y]〉 ⇐⇒ [x, y] ∈ ℓ⊥.

We always have [ℓ, x], [ℓ, y] ∈ ℓ⊥. Namely since ℓ is lightlike and geodesic, ℓ ⊥ x, we get

〈ℓ, [ℓ, x]〉 = 〈ℓ,∇ℓx − ∇xℓ〉 = ∂ℓ 〈ℓ, x〉 − 〈∇ℓℓ, x〉 − 1
2
∂x 〈ℓ, ℓ〉 = 0

and similarly for 〈ℓ, [ℓ, y]〉. The assertion then follows from Frobenius’ theorem. �

For an endomorphism A of ℓ⊥/ℓ we write |A|2 := tr(AtA). In the following we also write

Ds := 1
2
(D + Dt), Ds,0 := 1

2
(D + Dt − tr(D)id), Da := 1

2
(D − Dt).

We note that |σ|2 is independent of the choice of basis. Namely we have

|σ|2 = (Reσ)2
+ (Imσ)2

=
1
2
|Ds,0|2 = 1

2

∣∣∣∣1
2
(D + Dt − tr(D)id)

∣∣∣∣
2
=

1

8
tr((D + Dt − tr(D)id)2)

=
1

8
tr(D2

+ (Dt)2
+ DDt

+ DtD − 2tr(D)(D + Dt) + tr(D)2id)

=
1

8
(2tr(D2) + 2|D|2 − 4tr(D)2

+ 2tr(D)2) =
1

4
(tr(D2) + |D|2 − tr(D)2) (6)

and thus |σ|2 is independent of the choice of basis. We note however that σ itself does depend

on the choice of basis.

Next we note that the differential operator ∇ℓ acting on vector fields on M induces differential

operators on sections of both ℓ⊥ and ℓ⊥/ℓ which we also denote by ∇ℓ. Namely if X ⊥ ℓ, then

we have

0 = ∂ℓ 〈X, ℓ〉 = 〈∇ℓX, ℓ〉 + 〈X,∇ℓℓ〉 = 〈∇ℓX, ℓ〉

and therefore ∇ℓX ∈ ℓ⊥. It follows that ∇ℓ defines a first order differential operator acting on

sections of ℓ⊥. Furthermore for all vector fields X on M and for all f ∈ C∞(M) we have

∇ℓ(X + f ℓ) = ∇ℓX + (∂ℓ f )ℓ + f∇ℓℓ = ∇ℓX + (∂ℓ f )ℓ.

It follows that ∇ℓ induces a first order differential operator on sections of ℓ⊥/ℓ.
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For an endomorphism A of ℓ⊥/ℓ we define

∇ℓA := ∇ℓ ◦ A − A ◦ ∇ℓ.

Then for all sections X of ℓ⊥/ℓ the Leibniz rule holds

∇ℓ(A(X)) = (∇ℓA)(X) + A(∇ℓX).

We also note that the endomorphism X 7→ R(ℓ, X)ℓ of T M induces an endomorphism R(ℓ, ·)ℓ of

ℓ⊥/ℓ.

Proposition 6.50 (Riccati equation). We have

∇ℓD + D2
= R(ℓ, ·)ℓ.

Proof. Let X ∈ TpM for some p ∈ M such that X ⊥ ℓ at p. We obtain a vector field X along the

integral curve γ of ℓ through p by parallel translation along γ. In particular we may assume that

∇ℓX = 0. We get

(∇ℓD)(X) = ∇ℓ(D(X)) − D( ∇ℓX︸︷︷︸
=0

) = ∇ℓ∇Xℓ = R(ℓ, X)ℓ + ∇X ∇ℓℓ︸︷︷︸
=0

+∇[ℓ,X]ℓ

= R(ℓ, X)ℓ − ∇D(X)ℓ = R(ℓ, X)ℓ − D2(X),

where we have used that [ℓ, X] = ∇ℓX − ∇Xℓ = −∇Xℓ = −D(X). �

The following proposition tells us how the optical scalars evolve along the integral curves of ℓ.

Proposition 6.51 (Sachs equations). The following equations hold:

(i) ∂ℓω = −2θω

(ii) ∂ℓθ = ω
2 − θ2 − |σ|2 − 1

2
Ric(ℓ, ℓ)

(iii) ∂ℓσ = −2θσ − 1
2
(〈R(ℓ, X)ℓ, X〉 − 〈R(ℓ, Y)ℓ, Y〉) + i 〈R(ℓ, X)ℓ, Y〉,

where σ is defined with respect to an orthonormal frame X, Y such that X, Y are parallel

along the integral curves of ℓ.

Proof. (i) Case 1: Da is invertible everywhere. By definition we have ω2
= det(Da) and the

formula for the derivative of the determinant yields

∂ℓω
2
= ω2tr(D−1

a ∇ℓDa). (7)
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In the following computation we use the Riccati equation and its transpose where we note that

∇ℓDt
= (∇ℓD)t and that X 7→ R(ℓ, X)ℓ is self-adjoint with respect to 〈·, ·〉. We obtain

∇ℓDa =
1
2
∇ℓ(D − Dt) = 1

2
(−D2

+ R(ℓ, ·)ℓ + (Dt)2 − R(ℓ, ·)ℓ) = 1
2
((Dt)2 − D2).

We conclude that

tr(D−1
a ∇ℓDa) = 1

2
tr(D−1

a ((Dt)2 − D2)) = 1
2
tr(D−1

a ((Dt − D︸ ︷︷ ︸
=−2Da

)(Dt
+ D) + DDt − DtD))

= −tr(Dt
+ D) + 1

2
tr(D−1

a [D,Dt − D︸ ︷︷ ︸
=−2Da

]) = −2tr(D) − tr(D−1
a (DDa − DaD))

= −2tr(D) − tr(D) + tr(D) = −2tr(D) = −4θ. (8)

Now equations (8) and (7) yield

2ω∂ℓω = ∂ℓω
2
= ω2 · (−4θ)

which is assertion (i) in Case 1.

Case 2: Da is not everywhere invertible. If I denotes the parameter interval, we put

I+ := {s ∈ I |Da(s) is invertible}.

We have seen that (i) holds for all s ∈ I+. By continuity (i) holds for all s ∈ I+. On I \ I+ we

have ω2 ≡ 0 and thus ∂ℓω ≡ 0. Therefore (i) also holds on I \ I+.

(ii) Using the Riccati equation we compute

∂ℓθ =
1
2
tr(∇ℓD) = 1

2
tr(−D2

+ R(ℓ, ·)ℓ) = − 1
2
tr(D2) + 1

2
tr(R(ℓ, ·)ℓ).

If (bi)
4
i=1

is a basis of TpM and (gi j) := (
〈
bi, b j

〉
)4
i, j=1

with inverse matrix (gi j) then we have

Ric(ℓ, ℓ) =

4∑

i, j=1

gi j
〈
R(ℓ, bi)b j, ℓ

〉
.

We choose a real null tetrad ℓ, k, x, y as a basis of TpM. Then [x], [y] form an orthonormal basis

of ℓ⊥/ℓ and we get

Ric(ℓ, ℓ) = 〈R(ℓ, x)x, ℓ〉 + 〈R(ℓ, y)y, ℓ〉 − 〈R(ℓ, ℓ)k, ℓ〉︸        ︷︷        ︸
=0

− 〈R(ℓ, k)ℓ, ℓ〉︸        ︷︷        ︸
=0

= −tr(R(ℓ, ·)ℓ)

and therefore

∂ℓθ = − 1
2
tr(D2) − 1

2
Ric(ℓ, ℓ). (9)

From the characteristic polynomial

χDa
(λ) = λ2 − tr(Da)λ + det(Da) = λ2

+ det(Da)

we get by Cayley-Hamilton’s theorem that 0 = D2
a + det(Da)id and thus

0 = tr(D2
a) + 2 det(Da).



6.6. The optical scalars 195

Using this and (6) we conclude that

ω2 − θ2 − |σ|2 = det(Da) − 1

4
tr(D)2 − 1

4
(tr(D2) − tr(D)2

+ |D|2)

= − 1
2
tr(D2

a) − 1

4
tr(D2) − 1

4
|D|2

= −1

8
tr(D2

+ (Dt)2 − DDt − DtD) − 1

4
tr(D2) − 1

4
|D|2

= −1

4
tr(D2) +

1

4
|D|2 − 1

4
tr(D2) − 1

4
|D|2

= − 1
2
tr(D2)

and plugging this term into (9) we obtain the assertion (ii).

(iii) Using the Riccati equation and its transpose we compute

∇ℓDs,0 =
1
2
∇ℓ(D + Dt − tr(D)id) = 1

2
(−D2

+ 2R(ℓ, ·)ℓ − (Dt)2 − (∂ℓθ)id).

Recall that with respect to the basis X, Y we have

Ds,0 =


−Reσ Imσ

Imσ Reσ

 .

Since X, Y are orthonormal and parallel along the integral curves of ℓ we get

∂ℓσ = ∂ℓ
(

1
2
Reσ + 1

2
Reσ + iImσ

)
= ∂ℓ

(
− 1

2

〈
Ds,0X, X

〉
+

1
2

〈
Ds,0Y, Y

〉
+ i

〈
Ds,0X, Y

〉 )

= − 1
2

〈
(∇ℓDs,0)X, X

〉
+

1
2

〈
(∇ℓDs,0)Y, Y

〉
+ i

〈
(∇ℓDs,0)X, Y

〉

= −1

4
(−

〈
D2X, X

〉
−

〈
(Dt)2X, X

〉
+ 2 〈R(ℓ, X)ℓ, X〉 − ∂ℓθ 〈X, X〉)

+
1

4
(−

〈
D2Y, Y

〉
−

〈
(Dt)2Y, Y

〉
+ 2 〈R(ℓ, Y)ℓ, Y〉 − ∂ℓθ 〈Y, Y〉)

+
i

2
(−

〈
D2X, Y

〉
−

〈
(Dt)2X, Y

〉
+ 2 〈R(ℓ, X)ℓ, Y〉 − ∂ℓθ 〈X, Y〉)

=
1
2
(
〈
D2X, X

〉
−

〈
D2Y, Y

〉
) − i

2
(
〈
D2X, Y

〉
+

〈
X,D2Y

〉
)

︸                                                              ︷︷                                                              ︸
=:A

− 1
2
(〈R(ℓ, X)ℓ, X〉 − 〈R(ℓ, Y)ℓ, Y〉) + i 〈R(ℓ, X)ℓ, Y〉 . (10)

From the characteristic polynomial

χD(λ) = λ2 − tr(D)λ + det(D)

we get by Cayley-Hamilton’s theorem that 0 = D2 − tr(D)D + det(D)id and thus

A = 1
2
〈(tr(D)D − det(D))X, X〉 − 1

2
〈(tr(D)D − det(D))Y, Y〉

− i

2
〈(tr(D)D − det(D))X, Y〉 − i

2
〈(tr(D)D − det(D))Y, X〉

=
1
2
tr(D)(〈DX, X〉 − 〈DY, Y〉 − i 〈DX, Y〉 − i 〈DY, X〉).
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Since 〈DX, X〉 = 〈DsX, X〉, 〈DY, Y〉 = 〈DsY, Y〉, 〈X, X〉 = 〈Y, Y〉 and 〈X, Y〉 = 0 we get

A = θ(〈DsX, X〉 − 〈DsY, Y〉 − 2i 〈DsX, Y〉)
= θ(

〈
Ds,0X, X

〉
︸      ︷︷      ︸
=−Reσ

− 〈
Ds,0Y, Y

〉
︸     ︷︷     ︸
=Reσ

−2i
〈
Ds,0X, Y

〉
︸      ︷︷      ︸
=Imσ

) = −2θσ

and by plugging this term into (10) we obtain the assertion (iii). �

Example 6.52. (a) Let M = R4 with coordinates (t, x, y, z) and Minkowski metric such that

∂t is timelike. Then ℓ := ∂t−∂x is a lightlike geodesic vector field. In this case ℓ is parallel

and thus D = 0. It follows that ω = θ = σ = 0.

(b) Let M := R4 \ (R × (0, 0, 0)) with Minkowski metric and define ℓ := ∂t + ∂r, where

r := (x2
+ y2
+ z2)1/2, ∂r :=

1

r
(x∂x + y∂y + z∂z).

The integral curves of ℓ are straight lines on the lightcone. In particular, ℓ is a lightlike

and geodesic vector field. In order to compute D we calculate the derivative ∇Yℓ where

Y ⊥ ℓ. With respect to the coordinates on R × R3 we write Y = (τ,~y), τ ∈ R, ~y ∈ R3 and

ℓ = (1, ~x
r
). The condition Y ⊥ ℓ leads to

0 = 〈Y, ℓ〉 = −τ + 〈
~y, ∂r

〉
, and thus τ =

〈
~y, ∂r

〉
.

We conclude that

∇Yℓ = ∇Y∂r = ∇~y
~x

r
= − 1

r2

〈
~y,∇r

〉
~x +

1

r
∇~y~x = −

1

r2

〈
~y,
~x

r

〉
~x +

1

r
~y = − 1

r2

〈
~y, ~x

〉 ~x
r
+

1

r
~y.

Since ℓ = (1, ~x
r
) we get modulo ℓ

∇Yℓ
mod Rℓ
=

1

r2

〈
~x, ~y

〉
∂t +

1

r
~y =

1

r

( 〈
~y,
~x

r

〉
∂t + ~y

)
=

1

r
Y

It follows that D = 1
r
id and thus θ = 1

r
, ω = 0, σ = 0.

(c) Let M = Kerrm,a equipped with Boyer-Lindquist coordinates and define

ℓ = ∂r +
1

∆
V =

ρ
√
ε∆

E1 +
ερ
√
ε∆

E4 =
ρ
√
ε∆

(E1 + εE4),

where ε = sign∆, V = (r2
+ a2)∂t + a∂ϕ and we use the orthonormal frame E1, E2, E3, E4

defined in (??). Then ℓ is a lightlike geodesic vector field. The vectors [E2], [E3] form an

orthonormal basis of ℓ⊥/ℓ. Using the terms ∇Ei
E j from Section 4.2.8 we compute modulo
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Rℓ

∇E2
ℓ = ∂E2

( ρ
√
ε∆

)
(E1 + εE4︸    ︷︷    ︸

∈Rℓ

) +
ρ
√
ε∆

(∇E2
E1 + ε∇E2

E4)

mod Rℓ
=

ρ
√
ε∆

( r
√
ε∆

ρ3
E2 + ε

εa cosϑ
√
ε∆

ρ3
E3

)
=

1

ρ2
(rE2 + a cos ϑE3)

∇E3
ℓ

mod Rℓ
=

ρ
√
ε∆

(∇E3
E1 + ε∇E3

E4)

=
ρ
√
ε∆

(r
√
ε∆

ρ3
E3 −

εar sin ϑ

ρ3
E4 −

ar sinϑ

ρ3
E1 −

a cos ϑ
√
ε∆

ρ3
E2

)

mod Rℓ
=

1

ρ2
(rE3 − a cos ϑE2).

Therefore the matrix of D with respect to the basis [E2], [E3] is given by

1

ρ2


r −a cos ϑ

a cosϑ r



and thus θ = r
ρ2 , ω = − a cos ϑ

ρ2 , σ = 0. Note that the rotation ω changes its sign at the

equatorial plane Eq. In the special case of the Schwarzschild metric we have a = 0 thus

ρ = r and therefore θ = 1
r
, ω = 0, σ = 0 as in Minkowski space.

Remark 6.53. If we define ρ̂ := −θ + iω then the equations (i), (ii) of Proposition 6.51 are

equivalent to

∂ℓρ̂ = −∂ℓθ + i∂ℓω = −2iθω − ω2
+ θ2
+ |σ|2 + 1

2
Ric(ℓ, ℓ) = ρ̂2

+ |σ|2 + 1
2
Ric(ℓ, ℓ).

This leads to the so-called Newman-Penrose formalism where one uses complex null tetrads.

Theorem 6.54 (Goldberg-Sachs). Let M be a 4-dimensional Lorentzian manifold with Ric =

0 and R , 0 and let ℓ be a lightlike vector field on M. Then the following are equivalent.

(i) There exists f ∈ C∞(M), f > 0 such that f ℓ is a geodesic vector field with σ = 0.

(ii) At every point ℓ is a principal null vector of R with multiplicity m ≥ 2.

Corollary 6.55. If M has Petrov type I, then M has no lightlike geodesic vector fields with

σ = 0.





A. Solutions of selected exercises

1.1. We write x(t) for the distance from space craft to earth at time t. From x(0) = 0, ẋ(0) = 0

and ẍ = g, we get

x(t) = 1
2
gt2

for the first half of the journey. Is D the distance between earth and the object X and T is the

total time of travel, we obtain D/2 = 1
2
g(T/2)2 and therefore

T = 2
√

D/g.

The maximal velocity vmax is achieved after the time T/2, just before initiating the deceleration.

From ẋ(t) = gt, we obtain

vmax = g
T

2
=

√
gD.

Plugging in the different values for D results in

a) X = moon: T ≈ 3, 5 h, vmax ≈ 63 km/s.

b) X = Mars: T ≈ 42 − 112 hours, vmax ≈ 742 − 1980 km/s.

c) X = Proxima Centauri: T ≈ 4 years, vmax ≈ 2, 1 c.

d) X = Andromeda galaxy: T ≈ 2784 years, vmax ≈ 1434 c.

1.15. We perform the computations in the inertial frame of the earth. The earth’s world line is

then Re0 and we choose the coordinates such that the destination X has the world line Re0 +

(0,D, 0, 0). Let τ 7→ x(τ) the world line of the space ship, parametrized by proper time. The

four-velocity is then

u(τ) = (cosh(ϕ(τ)), sinh(ϕ(τ)), 0, 0)

for a function ϕ(τ) yet to be determined. For the four-acceleration, we have

a(τ) = ϕ′(τ)(sinh(ϕ(τ)), cosh(ϕ(τ)), 0, 0).

The absolute value of the four-acceleration is

g2
= 〈〈a(τ0), a(τ0)〉〉 = (ϕ′(t))2 · 1,

therefore ϕ′(τ) = ±g and hence ϕ(τ) = ±gτ+ ϕ0. From e0 = u(0) = (cosh(ϕ0), sinh(ϕ0), 0, 0) we

conclude ϕ0 = 0 and therefore ϕ(τ) = ±gτ.

During the first half of the travel, the spacecraft accelerates in direction X. Thus ϕ′(τ) > 0, hence

ϕ(τ) = gτ. We conclude u(τ) = (cosh(gτ), sinh(gτ), 0, 0) and therefore

x(τ) =
1

g
(sinh(gτ), cosh(gτ), 0, 0) + x0.
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From

(0, 0, 0, 0) = x(0) =
1

g
(0, 1, 0, 0) + x0

we get x0 = − 1
g
e1. Summarizing we have the proper-time parametrization of the world line of

the spacecraft:

x(τ) =
1

g
(sinh(gτ), cosh(gτ) − 1, 0, 0).

For the time of travel Tship from the viewpoint of the crew we obtain

D

2
= x1

(
Tship

2

)
=

1

g

(
cosh

(
g

Tship

2

)
− 1

)

and hence

Tship =
2

g
arcosh

(
Dg

2
+ 1

)
.

For the time of travel Tearth from the viewpoint of the earth we get

Tearth

2
= x0

(
Tship

2

)

= x0

(
1

g
arcosh

(
Dg

2
+ 1

))

=
1

g
sinh

(
arcosh

(
Dg

2
+ 1

))

=
1

g

√
g2D2

4
+ gD

=

√
D2

4
+

D

g

hence

Tearth =

√
D2 +

4D

g
.

Furthermore, the maximal velocity vmax can be calculated by

vmax =
u1(Tship/2)

u0(Tship/2)

= tanh

(
arcosh

(
gD

2
+ 1

))

=

√
g2D2

4
+ gD

gD

2
+ 1

=

√
g2D2 + 4gD

gD + 2
.
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Here, we always calculated in terms of the dimensionless mathematical velocity v, which is

related to the physical velocity by the speed of light,

v =
vphys

c
.

Mathematical length and time therefore have to have the same dimension. We choose the con-

vention to calculate in units of length, i.e.

D = Dphys, T = c · Tphys, g =
gphys

c2
.

Then we get

Tship, phys =
2c

gphys
arcosh

(
Dgphys

2c2
+ 1

)

Tearth, phys =

√
D2

c2
+

4D

gphys

vmax, phys =

c

√
D2gphys

2 + 4Dgphysc2

Dgphys + 2c2

Inserting the values for our destinations we get the following table:

classical relativistic

object X distance D time T vmax Tearth Tship vmax

moon 400.000 km 3,5 h 63 km/s 3,5 h 3,5 h 63 km/s

Mars (near) 56 mill. km 42 h 742 km/s 42 h 42 h 741 km/s

Mars (far) 400 mill. km 112 h 1980 km/s 112 h 112 h 1980 km/s

Proxima

Centauri
4,3 light years 4 years 2,1 c 5,9 years 3,6 years 0,95 c

Andromeda

galaxy

2 mill.

light

years

2784 years 1434 c
2 mill.

years
28 years almost c





B. SageMath computations

B.1. The Schwarzschild solution

B.1.1. The ansatz

Declaration of a mass parameter m and a 4-dimensional Lorentzian manifold M:

1sage: reset()

None

2sage: var(’m’, domain=’real’)

m

3sage: assume(m>0)

None

4sage: M = Manifold(4, ’M’, structure=’Lorentzian’)

5sage: std.<t,r,th,ph> = M.chart(r’t r:(2*m,+oo) th:[0,pi]:\

theta ph:[0,2*pi):\phi’)

Ansatz for the Schwarzschild metric:

6sage: F = function(’F’)(r)

7sage: G = function(’G’)(r)

8sage: g = M.metric(name=’g’)

9sage: g[0,0] = -F*F

10sage: g[1,1] = 1

11sage: g[2,2] = G*G

12sage: g[3,3] = G*G*sin(th)ˆ2

13sage: g.display()

g = −F (r)2 dt ⊗ dt + dr ⊗ dr +G (r)2 dθ ⊗ dθ +G (r)2 sin (θ)2 dφ ⊗ dφ

Compute the Christoffel symbols:

14sage: g.christoffel_symbols_display()
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Γ
t
t r =

∂ F
∂r

F(r)

Γ
r

t t = F (r) ∂ F
∂r

Γ
r
θ θ = −G (r) ∂G

∂r

Γ
r

φφ = −G (r) sin (θ)2 ∂G
∂r

Γ
θ

r θ =

∂G
∂r

G(r)

Γ
θ
φ φ = − cos (θ) sin (θ)

Γ
φ

r φ =

∂G
∂r

G(r)

Γ
φ
θ φ =

cos(θ)
sin(θ)

Show non-zero components of the Ricci tensor:

15sage: g.ricci()[0,0]

F (r) G (r) ∂
2 F
∂r2 + 2 F (r) ∂ F

∂r
∂G
∂r

G (r)

16sage: g.ricci()[1,1]

−
G (r) ∂

2 F
∂r2 + 2 F (r) ∂

2 G
∂r2

F (r) G (r)

17sage: g.ricci()[2,2]

−
G (r) ∂ F

∂r
∂G
∂r
+ F (r) ∂G

∂r

2
+ F (r) G (r) ∂

2 G
∂r2 − F (r)

F (r)

18sage: g.ricci()[3,3]

−

(
G (r) ∂ F

∂r
∂G
∂r
+ F (r) ∂G

∂r

2
+ F (r) G (r) ∂

2 G
∂r2 − F (r)

)
sin (θ)2

F (r)

B.1.2. The Schwarzschild metric

Declaration of a mass parameter m and a 4-dimensional Lorentzian manifold M:

19sage: reset()

None

20sage: var(’m’, domain=’real’)
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m

21sage: assume(m>0)

None

22sage: M = Manifold(4, ’M’, structure=’Lorentzian’)

23sage: std.<t,r,th,ph> = M.chart(r’t r:(2*m,+oo) th:[0,pi]:\

theta ph:[0,2*pi):\phi’)

The Schwarzschild metric:

24sage: def h(r):

25....: return 1-2*m/r

26sage: g = M.metric(name=’g’)

27sage: g[0,0] = -h(r)

28sage: g[1,1] = 1/h(r)

29sage: g[2,2] = rˆ2

30sage: g[3,3] = rˆ2*sin(th)ˆ2

31sage: g.display()

g =

(
2 m

r
− 1

)
dt ⊗ dt +

−
1

2 m
r
− 1

 dr ⊗ dr + r2dθ ⊗ dθ + r2 sin (θ)2 dφ ⊗ dφ

The Christoffel symbols:

32sage: g.christoffel_symbols_display()

Γ
t
t r = − m

2 mr−r2

Γ
r

t t = − 2 m2−mr
r3

Γ
r

r r =
m

2 mr−r2

Γ
r
θ θ = 2 m − r

Γ
r

φ φ = (2 m − r) sin (θ)2

Γ
θ

r θ =
1
r

Γ
θ
φ φ = − cos (θ) sin (θ)

Γ
φ

r φ =
1
r

Γ
φ
θ φ =

cos(θ)
sin(θ)

Check that Schwarzschild is indeed Ricci flat:
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33sage: g.ricci().display()

Ric (g) = 0

The Kretschmann scalar curvature:

34sage: R = g.riemann()

35sage: Km = R.down(g)[’_{ijkl}’] * R.up(g)[’ˆ{ijkl}’]

36sage: Km.display()

M −→ R

(t, r, θ, φ) 7−→ 48 m2

r6

B.2. The Kerr solution

B.2.1. Massless Kerr is Minkowski

We declare Minkowski spacetime:

37sage: reset()

None

38sage: Mink = Manifold(4, ’Mink’, latex_name=r’\mathsf{Mink}’)

39sage: cart.<t,x,y,z> = Mink.chart()

40sage: g = Mink.metric(’g’)

41sage: g[0,0] = -1

42sage: g[1,1] = 1

43sage: g[2,2] = 1

44sage: g[3,3] = 1

45sage: g.display()

g = −dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz

We introduce weird polar coordinates which include angular momentum:

46sage: var(’a’, domain=’real’)

a

47sage: weird.<tt,r,theta,phi> = Mink.chart(r’tt r:(0,+oo) theta

:(0,pi):\theta phi:(0,2*pi):\phi’)

48sage: trafo_weird_to_cart = weird.transition_map(cart, [tt,

sqrt(rˆ2+aˆ2)*sin(theta)*cos(phi), sqrt(rˆ2+aˆ2)*sin(theta)

*sin(phi), r*cos(theta)])
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49sage: trafo_weird_to_cart.display()



t = tt

x =

√
a2 + r2 cos (φ) sin (θ)

y =

√
a2 + r2 sin (φ) sin (θ)

z = r cos (θ)

Now we check how the Minkowski metric looks in these coordinates:

50sage: g.display(weird)

g = −dtt ⊗ dtt +

(
a2 cos (θ)2

+ r2

a2 + r2

)
dr ⊗ dr +

(
a2 cos (θ)2

+ r2
)

dθ ⊗ dθ +
(
a2
+ r2

)
sin (θ)2 dφ ⊗ dφ

This is precisely the Kerr metric with mass m = 0 and angular momentum a.

B.2.2. Check the Boyer-Lindquist identities

Declaration of the Kerr spacetime:

51sage: reset()

None

52sage: var(’m a’, domain=’real’)

(m, a)

53sage: Kerr = Manifold(4, ’Kerr’, structure=’Lorentzian’)

We introduce the Boyer-Lindquist coordinates:

54sage: BL.<t,r,theta,phi> = Kerr.chart(r’t r theta:(0,pi):\

vartheta phi:(-oo,oo):\varphi’)

55sage: BLF = Kerr.default_frame()

We define the metric in Boyer-Lindquist coordinates:

56sage: var(’Delta rho’)

(∆, ρ)

57sage: rho2 = rˆ2 + aˆ2*cos(theta)ˆ2

58sage: delta = rˆ2 - 2*m*r + aˆ2

59sage: g = Kerr.metric(’g’)

60sage: g[0,0] = -1+2*m*r/rho2
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61sage: g[0,3] = -2*m*r*a*sin(theta)ˆ2/rho2

62sage: g[1,1] = rho2/delta

63sage: g[2,2] = rho2

64sage: g[3,3] = (rˆ2+aˆ2+2*m*r*aˆ2*sin(theta)ˆ2/rho2)*sin(theta

)ˆ2

65sage: g[:]



2 mr

a2 cos(ϑ)2
+r2
− 1 0 0 − 2 amr sin(ϑ)2

a2 cos(ϑ)2
+r2

0 a2 cos(ϑ)2
+r2

a2−2 mr+r2 0 0

0 0 a2 cos (ϑ)2
+ r2 0

− 2 amr sin(ϑ)2

a2 cos(ϑ)2
+r2

0 0

(
2 a2mr sin(ϑ)2

a2 cos(ϑ)2
+r2
+ a2
+ r2

)
sin (ϑ)2



We check the Boyer-Lindquist identities (Lemma 4.8):

66sage: g[3,3] + a*sin(theta)ˆ2*g[0,3] - (rˆ2+aˆ2)*sin(theta)ˆ2

0

67sage: g[0,3] + a*sin(theta)ˆ2*g[0,0] + a*sin(theta)ˆ2

0

68sage: a*g[3,3] + (rˆ2+aˆ2)*g[0,3] - delta*a*sin(theta)ˆ2

0

69sage: a*g[0,3] + (rˆ2+aˆ2)*g[0,0] + delta

0

Lemma 4.9 can also be checked directly:

70sage: g[0,0]*g[3,3] - g[0,3]ˆ2 + delta*sin(theta)ˆ2

0

71sage: det(g[:]) + rho2ˆ2*sin(theta)ˆ2

0
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B.2.3. The Christoffel symbols

Show the nonzero Christoffel symbols. As we did for the Schwarzschild metric we could use the

command g.christoffel symbols display() but we want to prevent SageMath from

expanding all occurrances of ∆ and ρ2. For an expression this can be achieved by applying the

method subs(delta==Delta, rho2==rhoˆ2). This is why we display the Christoffel

symbols by hand using an iterated loop.

72sage: nabla = g.connection()

73sage: for i in Kerr.irange():

74....: for j in Kerr.irange():

75....: for k in range(j+1):

76....: result = factor(nabla[i,j,k].expr()).subs(

delta==Delta, rho2==rhoˆ2)

77....: if not result == 0:

78....: show(r’$\Gammaˆ’+str(latex(BL[i]))+r’_{’

+str(latex(BL[j]))+’ ’+str(latex(BL[k]))+r’}=’+latex(result

)+’$\n’)

Γ
t
rt =

(a2 sin(ϑ)2−a2
+r2)(a2

+r2)m

∆ρ4

Γ
t
ϑt
= − 2 a2mr cos(ϑ) sin(ϑ)

ρ4

Γ
t
ϕr =

(a4 cos(ϑ)2−a2r2 cos(ϑ)2−a2r2−3 r4)am sin(ϑ)2

∆ρ4

Γ
t
ϕϑ
= − 2 (a2 sin(ϑ)2−a2−r2)a3mr cos(ϑ) sin(ϑ)3

ρ6

Γ
r
tt = −

(a cos(ϑ)+r)(a cos(ϑ)−r)∆m

ρ6

Γ
r
rr =

a2m cos(ϑ)2−a2r cos(ϑ)2
+a2r−mr2

∆ρ2

Γ
r
ϑr
= − a2 cos(ϑ) sin(ϑ)

ρ2

Γ
r
ϑϑ = −

∆r
ρ2

Γ
r
ϕt =

(a cos(ϑ)+r)(a cos(ϑ)−r)∆am sin(ϑ)2

ρ6

Γ
r
ϕϕ = −

(a4r cos(ϑ)4
+a4m cos(ϑ)2 sin(ϑ)2

+2 a2r3 cos(ϑ)2−a2mr2 sin(ϑ)2
+r5)∆ sin(ϑ)2

ρ6

Γ
ϑ
tt = −

2 a2mr cos(ϑ) sin(ϑ)

ρ6

Γ
ϑ
rr =

a2 cos(ϑ) sin(ϑ)

∆ρ2

Γ
ϑ
ϑr
=

r
ρ2

Γ
ϑ
ϑϑ
= − a2 cos(ϑ) sin(ϑ)

ρ2

Γ
ϑ
ϕt =

2 (a2
+r2)amr cos(ϑ) sin(ϑ)

ρ6

Γ
ϑ
ϕϕ = −

(a6 cos(ϑ)4−2 a4mr cos(ϑ)4
+a4r2 cos(ϑ)4

+2 a4r2 cos(ϑ)2−4 a2mr3 cos(ϑ)2
+2 a2r4 cos(ϑ)2

+2 a4mr+4 a2mr3
+a2r4

+r6) cos(ϑ) sin(ϑ)

ρ6

Γ
ϕ
rt = −

(a cos(ϑ)+r)(a cos(ϑ)−r)am

∆ρ4

Γ
ϕ
ϑt
= − 2 amr cos(ϑ)

ρ4 sin(ϑ)
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Γ
ϕ
ϕr = − a4m cos(ϑ)4−a4r cos(ϑ)4−a4m cos(ϑ)2

+a2mr2 cos(ϑ)2−2 a2r3 cos(ϑ)2
+a2mr2

+2 mr4−r5

∆ρ4

Γ
ϕ
ϕϑ
=

(a4 sin(ϑ)4−2 a4 sin(ϑ)2
+2 a2mr sin(ϑ)2−2 a2r2 sin(ϑ)2

+a4
+2 a2r2

+r4) cos(ϑ)

ρ4 sin(ϑ)

B.2.4. The Killing tensor field

Definition of the canonical vector field V:

79sage: V = Kerr.vector_field(name=’V’)

80sage: V[0] = rˆ2 + aˆ2

81sage: V[3] = a

82sage: V.display()

V =
(
a2
+ r2

) ∂
∂t
+ a

∂

∂ϕ

Two lightlike vector fields:

83sage: Lplus = 1/delta*V + BLF[1]

84sage: Lplus.display()

(
a2
+ r2

a2 − 2 mr + r2

)
∂

∂t
+
∂

∂r
+

(
a

a2 − 2 mr + r2

)
∂

∂ϕ

85sage: Lminus = 1/delta*V - BLF[1]

86sage: Lminus.display()

(
a2
+ r2

a2 − 2 mr + r2

)
∂

∂t
− ∂

∂r
+

(
a

a2 − 2 mr + r2

)
∂

∂ϕ

Now we define the symmetric (0, 2)-tensor field K:

87sage: K = delta/2*(Lplus.down(g)*Lminus.down(g)+Lminus.down(g)

*Lplus.down(g)) + rˆ2*g

88sage: K.display()


a2r2
+

(
a4 − 2 a2mr

)
cos (ϑ)2

a2 cos (ϑ)2
+ r2

 dt⊗dt+

−
2 a3mr sin (ϑ)4 −

(
2 a3mr − a3r2 − ar4 −

(
a5
+ a3r2

)
cos (ϑ)2

)
sin (ϑ)

a2 cos (ϑ)2
+ r2

Compute its covariant differential:

89sage: nablaK = nabla(K)

90sage: nablaK.display()

ar sin (ϑ)2 dt⊗dr⊗dϕ+
(
a3 − 2 amr + ar2

)
cos (ϑ) sin (ϑ) dt⊗dϑ⊗dϕ−ar sin (ϑ)2 dt⊗dϕ⊗dr−

(
a3 − 2 amr + ar2

)
cos

Now we define a generic vector field and check that K is a Killing tensor field:
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91sage: var(’T R TH PH’)

(T,R, TH,PH)

92sage: X = Kerr.vector_field(name=’X’)

93sage: X[0] = T

94sage: X[1] = R

95sage: X[2] = TH

96sage: X[3] = PH

97sage: X.display()

X = T
∂

∂t
+ R

∂

∂r
+ TH

∂

∂ϑ
+ PH

∂

∂ϕ

98sage: nablaK(X,X,X).display()

Kerr −→ R

(t, r, ϑ, ϕ) 7−→ 0

B.2.5. The Carter constant

We find two expressions for the Carter constant. The first one is

99sage: q = g(X,X).expr()

100sage: v = T*delta - PH*delta*a*sin(theta)ˆ2

101sage: Carter1 = rˆ2*q - rho2ˆ2*Rˆ2/delta + vˆ2/delta

102sage: Carter1

−

(
a2 cos (ϑ)2

+ r2
)2

R2

a2 − 2 mr + r2
−

(
2 TH2mr5 − TH2r6 − 2 T 2a2mr − 4 T 2mr3 −

(
TH2a2

+ R2 − T 2
)
r4 −

(
TH2a6 − 2 TH2a4mr + TH2a

103sage: Error1 = K(X,X).expr() - Carter1

104sage: Error1.simplify_full()

0

The second one is

105sage: w = -T*a*sin(theta)ˆ2 + PH*(rˆ2+aˆ2)*sin(theta)ˆ2

106sage: Carter2 = rho2ˆ2*THˆ2 + wˆ2/sin(theta)ˆ2 - aˆ2*q*cos(

theta)ˆ2

107sage: Carter2

(
a2 cos (ϑ)2

+ r2
)2

TH2
+

(
2 TH2mr5 − TH2r6 − 2 T 2a2mr − 4 T 2mr3 −

(
TH2a2

+ R2 − T 2
)
r4 −

(
TH2a6 − 2 TH2a4mr + TH2a
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108sage: Error2 = K(X,X).expr() - Carter2

109sage: Error2.simplify_full()

0

B.2.6. Ricci curvature

Check that the Ricci curvature of Kerr vanishes, i.e. that Kerr is a vacuum solution:

110sage: g.ricci().display()

Ric (g) = 0
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Poincaré, Henri . . . . . . . . . . . . . . . . . . . . . . . . 7

postulate

of general relativity . . . . . . . . . . . . . . . 55

of special relativity . . . . . . . . . . . . . . . 21

preservation of angular momentum . . . . . 43

principal null bivector . . . . . . . . . . . . . . . . 184

principal null direction . . . . . . . . . . . . . . . 184

principal null vector . . . . . . . . . . . . . . . . . 184

proper length . . . . . . . . . . . . . . . . . . . . . . . . . 30

R

radiation cosmos. . . . . . . . . . . . . . . . . . . . . .68

real null tetrad . . . . . . . . . . . . . . . . . . . . . . . 186

redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

relativistic mass . . . . . . . . . . . . . . . . . . . . . . 36

relativistic velocity addition . . . . . . . . . . . . 26

rest length . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

rest mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Riccati equation . . . . . . . . . . . . . . . . . . . . . 193

Ricci curvature . . . . . . . . . . . . . . . . . . . . . . . 52

Riemann curvature tensor . . . . . . . . . . . . . .52

ring singularity in Kerr . . . . . . . . . . . . . . . . 97

Robertson-Walker spacetime . . . . . . . . . . . 59

S

Sachs equations . . . . . . . . . . . . . . . . . . . . . 193

scalar curvature . . . . . . . . . . . . . . . . . . . . . . . 52

Schwarzschild observer . . . . . . . . . . . . . . . 85

Schwarzschild radius . . . . . . . . . . . . . . . . . . 93

Schwarzschild spacetime . . . . . . . . . . . . . . 85

Schwarzschild, Karl . . . . . . . . . . . . . . . . . . . 81

screen bundle . . . . . . . . . . . . . . . . . . . . . . . 190

second fundamental form . . . . . . . . . . . . . 138

semicubical parabola . . . . . . . . . . . . . . . . . . 68

sight angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

simultaneity . . . . . . . . . . . . . . . . . . . . . . . . . . 23

spacelike curve . . . . . . . . . . . . . . . . . . . . . . . 52

spacelike vector . . . . . . . . . . . . . . . . . . . . . . 12

spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

stationary . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 38

stress-energy tensor . . . . . . . . . . . . . . . . . . . 38

superluminal velocity . . . . . . . . . . . . . . . . . 25

T

tachyon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

throat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

time dilation . . . . . . . . . . . . . . . . . . . . . . . . . 30

time machine . . . . . . . . . . . . . . . . . . . . . . . .109

time orientable . . . . . . . . . . . . . . . . . . . . . . . 51

time orientation. . . . . . . . . . . . . . . . . . . . . . .50

time oriented . . . . . . . . . . . . . . . . . . . . . . . . . 51

timelike curve . . . . . . . . . . . . . . . . . . . . . . . . 52

timelike vector . . . . . . . . . . . . . . . . . . . . . . . 12

totally symmetric tensor . . . . . . . . . . . . . . 117

totally umbilic . . . . . . . . . . . . . . . . . . . . . . .128

tunnel paradox . . . . . . . . . . . . . . . . . . . . . . . 30

twin paradox . . . . . . . . . . . . . . . . . . . . . . . . . 34

twist of light beam . . . . . . . . . . . . . . . . . . . 191

V

velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

velocity-addition formula . . . . . . . . . . . 4, 27

W

warped product . . . . . . . . . . . . . . . . . . . . . . . 59

wave equation . . . . . . . . . . . . . . . . . . . . . . . . . 5

Weyl curvature . . . . . . . . . . . . . . . . . . . . . . 166

white hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

world line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Y

Yamabe operator . . . . . . . . . . . . . . . . . . . . 156


	Preface
	Special relativity
	Classical kinematics
	Absolute space
	Absolute time

	Electrodynamics
	The Lorentz group and Minkowski geometry
	Relativistic kinematics
	The postulate of special relativity
	Simultaneity
	Superluminal velocity
	Absolute velocity and hyperbolic distance
	Addition of velocity
	Length contraction
	Time dilation

	Mass and energy
	Closing remarks about special relativity
	Exercises

	Einstein's field equations
	Classical theory of gravitation
	Equivalence principle
	Time orientations
	Einstein's field equations
	Exercises

	Models for the whole universe
	Robertson-Walker spacetimes
	Geodesics of the spacetime
	Singularities
	Horizons

	Cosmological inflation
	Two problems with Friedmann spacetimes
	A simple inflationary model

	Exercises

	Black holes
	The Schwarzschild solution
	Trajectories of massless particles
	Orbits of massive particles
	Kruskal coordinates
	The singularity at r=0

	Rotating black holes - the Kerr solution
	The ansatz
	Extension across the axis
	Isometries and special submanifolds
	Causality properties and the time machine
	Extension across the horizons
	The Christoffel symbols
	Geodesics
	The Kerr metric is a vacuum solution

	Exercises

	Gravitational waves
	First variation of geometric quantities
	Constraint equations
	Linearization of the constraint equations
	Existence of solutions to the gravitational wave equation
	Construction of solutions to the constraint equations

	Petrov classification
	Algebraic curvature tensors
	Hodge- operator
	Curvature as a complex linear endomorphism
	The Petrov types
	Principal null vectors and bivectors
	The optical scalars

	Solutions of selected exercises
	SageMath computations
	The Schwarzschild solution
	The ansatz
	The Schwarzschild metric

	The Kerr solution
	Massless Kerr is Minkowski
	Check the Boyer-Lindquist identities
	The Christoffel symbols
	The Killing tensor field
	The Carter constant
	Ricci curvature


	Bibliography
	Index

