
RAYLEIGH QUOTIENT ITERATION AND SIMPLIFIED
JACOBI-DAVIDSON WITH PRECONDITIONED ITERATIVE SOLVES FOR

GENERALISED EIGENVALUE PROBLEMS

MELINA A. FREITAG∗, ALASTAIR SPENCE† , AND EERO VAINIKKO ‡

Abstract. The computation of a right eigenvector and corresponding finite eigenvalue of a large sparse gen-
eralised eigenproblem Ax = λMx using preconditioned Rayleigh quotient iteration and the simplified Jacobi-
Davidson method is considered. Both methods are inner-outer iterative methods and we consider GMRES and
FOM as iterative algorithms for the (inexact) solution of the inner systems that arise. The performance of
the methods is measured in terms of the number of inner iterations needed at each outer solve. For inexact
Rayleigh quotient iteration we present a detailed analysis of both unpreconditioned and preconditioned GM-
RES and it is shown that the number of inner iterations increases as the outer iteration proceeds. We discuss
a tuning strategy for the generalised eigenproblem, and show how a rank one change to the preconditioner
produces significant savings in overall costs for the Rayleigh quotient iteration. Furthermore for a specially
tuned preconditioner we prove an equivalence result between inexact Rayleigh quotient iteration and simplified
Jacobi-Davidson method. The theory is illustrated by several examples, including the calculation of a complex
eigenvalue arising from a stability analysis of the linearised Navier-Stokes equations.
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1. Introduction. In this paper we consider the computation of a simple eigenvalue and
corresponding eigenvector of the generalised eigenproblem Ax = λMx where A and M are
large sparse nonsymmetric matrices. We examine the inexact Rayleigh quotient iteration (RQI)
and the simplified Jacobi-Davidson (JD) method. The RQI requires the repeated solution of
shifted linear systems of the form

(A− ρM)y = Mx (1.1)

where ρ is a generalised Rayleigh quotient and we analyse in detail the performance of pre-
conditioned GMRES applied to (1.1). We shall show that a simple modification of a standard
preconditioner produces significant savings in costs.

The convergence theory for inverse iteration with inexact solves has been considered in [11]
for several shift strategies. This theory covers the most general setting, where A and M are
nonsymmetric with M allowed to be singular (for other special cases, for example, symmetric
problems or only fixed shifts, see [18, 25, 36, 27, 1, 2]). It was shown that, for a fixed shift
strategy, a decreasing tolerance provides linear convergence, whereas for a generalised Rayleigh
Quotient shift a constant solve tolerance gives linear convergence and a decreasing tolerance
achieves quadratic convergence.

For inexact inverse iteration the costs of the inner solves using Krylov methods has been
investigated in [1] and [14] for the symmetric solvers CG/MINRES and in [3] for the nonsym-
metric solver GMRES. In these papers it was shown that, for the standard eigenvalue problem,
the number of inner iterations remains approximately constant as the outer iteration proceeds
if no preconditioner is used but increases if a standard preconditioner is applied. A so-called
tuned preconditioner has been introduced in [14] for the standard Hermitian eigenproblem and
in [10] for the generalised eigenproblem (though no analysis of the inner solves was provided
in [10]). In [44] a detailed analysis of the convergence of MINRES for the tuned precondi-
tioner applied to the standard Hermitian eigenproblem was given. The idea of modifying the
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preconditioner with small rank changes has been extended to subspace versions of inexact in-
verse iteration: Robbé et al [29] consider tuning for inexact inverse subspace iteration and [13]
extends the idea to the shift-and-invert Arnoldi method.

This paper has several aims which distinguish it from earlier reports on tuning. First, we
extend the results from [14] for standard Hermitian eigenproblems to the generalised nonsym-
metric eigenproblem Ax = λMx and give a detailed analysis of the costs of the inner solves as
the outer iteration proceeds, Second, we extend the analysis to the choice of Rayleigh quotient
shifts and note that the analysis readily extends to other variable shift strategies. For the gen-
eralised eigenproblem it turns out that for both unpreconditioned and preconditioned GMRES
a tuning strategy gives significant improvement. This analysis suggest that tuning provides a
powerful computational tool for reducing the costs in the computations of eigenvalues of large
nonsymmetric problems. Third, we present numerical results for an eigenvalue problem aris-
ing from a mixed finite element discretisation of the linearised steady Navier-Stokes equation.
Specifically, we calculate a complex eigenvalue near the imaginary axis which suggests a nearby
Hopf bifurcation in the corresponding time-dependent problem. Fourth, this paper provides
a theoretical tool to compare the numerical performance of preconditioned inexact RQI and
the preconditioned JD method and hence analyse the latter. Various experiments on iterative
solves for the inner linear systems arising in inexact RQI and inexact JD [28] have shown
that, if standard preconditioners are used, JD gives some advantage. In [12] it was shown
that for the standard eigenvalue problem, the simplified JD method, that is the JD method
without subspace expansion, used with a standard preconditioner is equivalent to applying
inexact inverse iteration with a tuned preconditioner if the same Galerkin-Krylov method is
used for the inner solves. In this paper we extend this theory to the generalised nonsymmetric
eigenproblem. This shows that inexact RQI with a tuned preconditioner gives identical results
to those obtained using the preconditioned simplified JD method. Numerical results are given
comparing preconditioned solves in simplified JD and inexact RQI where GMRES is used as
solver.

The paper is organised as follows. Section 2 gives some background results including the
convergence theory of inexact RQI and a convergence theory of GMRES, where the right hand
side is given special consideration. Section 3 presents the concept of tuning and its imple-
mentation for the generalised eigenproblem. We present theoretical results for RQI and right
preconditioning, though we note that the analysis extends to other variable shift choices and
left preconditioning. A numerical example taken from the stability analysis of the linearised
steady Navier-Stokes equations is given in Section 4. Section 5 provides a result on the equiv-
alence between the preconditioned JD method and inexact RQI with a tuned preconditioner
for a generalised eigenproblem and a Galerkin-Krylov solver. Numerical results confirm this
equivalence. We also present numerical results when GMRES is used as the iterative solver.
These results show a very close relationship between the RQI and the simplified JD method.

Throughout this paper we use ‖ · ‖ = ‖ · ‖2.

2. Preliminaries. Consider the general nonsymmetric eigenproblem

Ax = λMx, x 6= 0, (2.1)

with A ∈ C
n×n and M ∈ C

n×n, where we assume that (λ1,x1) is a simple, well-separated finite
eigenpair with corresponding left eigenvector uH

1 , that is Ax1 = λ1Mx1 and uH
1 A = λ1u

H
1 M,

where uH
1 Mx1 6= 0. We consider inexact RQI (see [11]) to compute λ1. Let x(i) be an

approximation to x1. Then, at each step i, a solve of the system

(A − ρ(x(i))M)y(i) = Mx(i) (2.2)

is required, where (a normed) y(i) is a better approximation to x1 and ρ(x(i)) is the generalised
Rayleigh quotient defined by

ρ(x(i)) =
x(i)H

MHAx(i)

x(i)H
MHMx(i)

. (2.3)



INEXACT INVERSE ITERATION AND SIMPLIFIED JACOBI-DAVIDSON 3

This has the desirable property that, for a given x(i), the eigenvalue residual

r(i) = Ax(i) − ρ(x(i))Mx(i) (2.4)

is minimised with respect to ‖ ·‖. Suppose that x(i) is normalised such that ‖Mx(i)‖ = 1. This
scaling is possible if x(i) is close to x1, an eigenvector belonging to a finite eigenvalue of (2.1).
Assuming ρ(x(i)) is closer to λ1 than to any other eigenvalue and x(0) is close enough to x1,
we have the following convergence result. Let

d(i) = Mx(i) − (A − ρ(x(i))M)y(i), with ‖d(i)‖ ≤ τ (i)

with τ (0) small enough. For a Rayleigh quotient shift (2.3) and a decreasing tolerance τ (i) =
δ‖r(i)‖ quadratic convergence is obtained, for a fixed τ (i) := τ (0) the convergence is linear (see
Remark 3.6 in [11]).

A popular method to solve the linear system (2.2) iteratively is GMRES. We now give a
convergence result for GMRES applied to the system Bz = b, where B has a well-separated
simple eigenvalue near zero and the form of the right hand side, b is taken into consideration.
This theory is general in the sense that it does not need the system matrix B to be diagonalis-
able. In the theory in Section 3 we shall choose B to be A− ρ(x(i))M or (A− ρ(x(i))M)P−1

where P is some preconditioner, and b will be Mx(i).
We summarise some theoretical results assuming that B has an algebraically simple eigen-

pair (µ1,w1) with µ1 near zero and well-separated from the rest of the spectrum. Schur’s
theorem [17, page 313] ensures the existence of a unitary matrix [w1,W

⊥
1 ] such that

B =
[

w1 W⊥
1

]

[

µ1 nH
12

0 N22

]

[

w1 W⊥
1

]H
, (2.5)

where w1 ∈ Cn×1, W⊥
1 ∈ Cn×(n−1), n12 ∈ C(n−1)×1 and N22 ∈ C(n−1)×(n−1). Since µ1 is not

contained in the spectrum of N22 the equation

fHN22 − µ1f
H = nH

12 (2.6)

has a unique solution f ∈ C(n−1)×1 (see [17, Lemma 7.1.5]) and with

W2 = (−w1f
H + W⊥

1 )(I + ffH)−
1
2 (2.7)

and C = (I + ffH)−
1
2 N22(I + ffH)

1
2 we obtain the block-diagonalisation of B:

B =
[

w1 W2

]

[

µ1 0H

0 C

] [

vH
1

VH
2

]

, (2.8)

where [v1,V2]
H is the inverse of the nonsingular matrix [w1,W2], see [39, Theorem 1.18].

Note that C and N22 have the same spectrum. We have

v1 = w1 + W⊥
1 f and V2 = W⊥

1 (I + ffH)
1
2 .

Furthermore, Bw1 = µ1w1 and vH
1 B = µ1v

H
1 , that is, v1 is the left eigenvector of B cor-

responding to µ1. Note that vH
1 w1 = 1, VH

2 W2 = I, vH
1 W2 = 0H and VH

2 w1 = 0. Also
‖w1‖ = 1, and W2 has orthonormal columns.

Further, introduce the separation function sep(µ1,C) (see, for example [38, 40]) defined
by

sep(µ1,C) :=

{

‖(µ1I − C)−1‖−1
2 , µ1 6∈ Λ(C)

0, µ1 ∈ Λ(C)
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and note that by definition sep(µ1,C) = σmin(µ1I − C), where σmin is the minimum singular
value and the quantities sep(µ1,C) and sep(µ1,N22) are related by (see [40])

sep(µ1,N22)

κ
≤ sep(µ1,C) ≤ κ sep(µ1,N22), where κ =

√

1 + fHf . (2.9)

Further, let

P = I − w1v
H
1 , (2.10)

be an oblique projector (see, for example, [30, 41] and [40]) onto R(W2) along R(w1) and I−P
projects onto R(w1) along the orthogonal complement R(W2) of R(v1). With the results after
(2.8) we have ‖P‖ =

√

1 + ‖f‖2 = κ. Before analysing GMRES we state a proposition which
follows from the perturbation theory of eigenvectors belonging to simple eigenvalues (see [39],
[40] and [38]).

Proposition 2.1. Let µ1 be a simple eigenvalue of B with corresponding right eigenvector
w1 and let W = [w1,W

⊥
1 ] be unitary such that (2.5) holds. Let

Bŵ = ξŵ + e, with ‖ŵ‖ = 1, (2.11)

that is (ŵ, ξ) is an approximate eigenpair of B with residual e. If e is small enough such that

‖e‖ <
1

2
sep(µ1,N22) and

‖e‖(‖e‖ + ‖n12‖)

(sep(µ1,N22) − 2‖e‖)2
<

1

4
, then there exists a unique vector p

satisfying

‖p‖ ≤ 2
‖e‖

sep(µ1,N22) − 2‖e‖
such that ŵ =

w1 + W⊥
1 p

√

1 + pHp
.

Proof. Write (2.11) as a perturbed eigenvalue problem (B − eŵH)ŵ = ξŵ and apply [40,
Theorem 2.7, Chapter 5].
Proposition 2.1 shows that the eigenvector ŵ of the perturbed problem (2.11) compared to the
exact problem Bw1 = µ1w1 depends on the size of the norm of the perturbation e and on the
separation of the eigenvalue µ1 from the rest of the spectrum.

Using the block factorisation (2.8) and the oblique projector (2.10) we have the following
convergence result for GMRES applied to the linear system Bz = b.

Theorem 2.2 (GMRES convergence). Suppose the nonsymmetric matrix B ∈ Cn×n has
a simple eigenpair (µ1,w1) with block diagonalisation (2.8). and set P = I−w1v

H
1 . Let zk be

the result of applying k steps of GMRES to Bz = b with starting value z0 = 0. Then

‖b− Bzk‖ ≤ min
pk−1∈Πk−1

‖pk−1(C)‖‖I− µ−1
1 C‖‖V2‖‖Pb‖, (2.12)

where Πk−1 is the set of complex polynomials of degree k − 1 normalised such that p(0) = 1
and ‖V2‖ =

√

1 + ‖f‖2 = ‖v1‖ = κ where f is given by (2.6) and κ is given by (2.9).
Proof. The residual for GMRES satisfies (see [20])

‖b− Bzk‖2 = min
pk∈Πk

‖pk(B)b‖,

where Πk is the set of polynomials of degree k with p(0) = 1. Introduce special polynomials
p̂k ∈ Πk, given by

p̂k(z) = pk−1(z)
(

1 − µ−1
1 z

)

,

where pk−1 ∈ Πk−1. Note that similar polynomials were introduced by Campbell et al. [5] (see
also [43]). Then we can write

‖b− Bzk‖2 = min
pk∈Πk

‖pk(B)Pb + pk(B)(I − P)b‖ ≤ min
p̂k∈Πk

‖p̂k(B)Pb + p̂k(B)(I − P)b‖

≤ min
pk−1∈Πk−1

‖pk−1(B)
(

I − µ−1
1 B

)

Pb + pk−1(B)
(

I − µ−1
1 B

)

(I− P)b‖.
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For the second term we have
(

I − µ−1
1 B

)

(I−P)b =
(

I − µ−1
1 B

)

w1v
H
1 b = 0,using (2.10) and

Bw1 = µ1w1. Therefore

‖b− Bzk‖ ≤ min
pk−1∈Πk−1

‖pk−1(B)
(

I− µ−1
1 B

)

Pb‖. (2.13)

With P2 = P and PB = BP we have

pk−1(B)
(

I− µ−1
1 B

)

Pb = pk−1(W2CVH
2 )
(

I − µ−1
1 B

)

Pb

= W2pk−1(C)
(

I− µ−1
1 C

)

VH
2 Pb,

and hence the result (2.12) follows, since W2 has orthonormal columns.
Note that the minimum in (2.12) is taken with respect to the smaller matrix C instead of B.
To bound the first term on the right hand side of (2.12) we use the ε-pseudospectrum Λε(C)
of a matrix C, defined by

Λε(C) := {z ∈ C : ‖(zI− C)−1‖2 ≥ ε−1}. (2.14)

(see, for example [9]) and results from complex analysis.
Proposition 2.3. Suppose there exists a convex closed bounded set E in the complex plane

satisfying 0 /∈ E, containing the ε-pseudospectrum Λε(C). Let Ψ be the conformal mapping
that carries the exterior of E onto the exterior of the unit circle {|w| > 1} and that takes
infinity to infinity. Then

min
pk−1∈Πk−1

‖pk−1(C)‖ ≤ S

(

1

|Ψ(0)|

)k−1

, where S =
3L(Γε)

2πε
(2.15)

and |Ψ(0)| > 1. Hence

‖b− Bzk‖ ≤ S

(

1

|Ψ(0)|

)k−1

‖V2‖‖(I− µ−1
1 C)‖‖Pb‖, (2.16)

for any choice of the parameter ε, where L(Γε) is the contour length of Γε and Γε is the contour
or union of contours enclosing Λε(C).

Proof. Using the pseudospectral bound in [42, Theorem 26.2] we get

‖pk−1(C)‖ ≤
L(Γε)

2πε
max

z∈Λε(C)
|pk−1(z)|,

where L(Γε) is the contour length of Γε, and

min
pk−1∈Πk−1

max
z∈Λε(C)

|pk−1(z)| ≤
3

|Ψ(0)|k−1
(2.17)

follows from [22, Proof of Lemma 1]. As 0 6∈ E and as Ψ maps the exterior of E onto the
exterior of a unit disc we have |Ψ(0)| > 1 and hence, with Λε(C) ⊂ E and (2.15) we obtain
(2.16) from (2.12).

The following corollary is immediately obtained from Proposition 2.3.
Corollary 2.4. Let C be perturbed to C + δC, where ‖δC‖ < ε. Then

min
pk−1∈Πk−1

‖pk−1(C + δC)‖ ≤ Sδ

(

1

|Ψ(0)|

)k−1

, (2.18)

where Sδ = 3L(Γε)(2π(ε − ‖δC‖))−1.
Note that the bound in (2.16) describes the convergence behaviour in the worst-case sense and
is by no means sharp, see [26]. Simpler bounds using Chebychev polynomials can be derived
if B is diagonalisable and the eigenvalues are located in an ellipse or circle (see Saad [32]).
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Proposition 2.5 (Number of inner iterations). Let the assumptions of Theorem 2.2 hold
and let zk be the approximate solution of Bz = b obtained after k iterations of GMRES with
starting value z0 = 0. If the number of inner iterations satisfies

k ≥ 1 +
1

log |Ψ(0)|

(

log(S‖µ1I− C‖‖V2‖) + log
‖Pb‖

|µ1|τ

)

, (2.19)

then ‖b− Bzk‖ ≤ τ .
Proof. Taking log’s in (2.16) gives the required result.

The bound in (2.19) is only a sufficient condition, the desired accuracy might be reached for
a much smaller value of k. We shall see in the following section that the important term in
(2.19) is

log
‖Pb‖

|µ1|τ
. (2.20)

Since τ may be small and |µ1| will be small (since we assume µ1 is near zero) (2.20) will be
large unless ‖Pb‖ is also small. We shall make this more precise in the next section, but first
let us analyse further the term Pb = (I − w1v

H
1 )b for a general b.

Proposition 2.6. Consider the linear system Bz = b. Let P = I − w1v
H
1 where v1 and

w1 are left and right eigenvectors of B. Furthermore, let b be decomposed as b = b1w1+W2b2,
where w1 and W2 are as in (2.8), b1 ∈ C and b2 ∈ C(n−1)×1. Then

‖Pb‖ = ‖b2‖. (2.21)

Proof. For general b we have Pb = (I−w1v
H
1 )b = (b−vH

1 bw1). Using the decomposition
b = b1w1 + W2b2 we have

Pb = b1w1 + W2b2 − vH
1 (b1w1 + W2b2)w1 = W2b2,

where we have used vH
1 w1 = 1 and vH

1 W2 = 0H (see remarks after (2.8)). Hence ‖Pb‖ =
‖W2‖‖b2‖ = ‖b2‖, since W2 has orthonormal columns.

Hence, for any vector b, which is not parallel to w1 (that is, ‖b2‖ 6= 0) we have that ‖Pb‖
is nonzero. However, if b2 is small, then ‖Pb‖ will be small and this may help counter the
small terms |µ1| and τ in the numerator of (2.20). This is a key point and is discussed more
concretely in the next section.

3. Tuning for the nonsymmetric generalised eigenproblem. This section contains
one of the main results in this paper. Specifically we discuss the use of a tuned preconditioner
to obtain an efficient solution procedure for the linear systems arising in inexact RQI. The
main theoretical results are given in Theorem 3.5 which relies on Proposition 2.5.

In [14] it is shown that for the standard Hermitian eigenproblem inexact inverse iteration
with a fixed shift leads to a constant number of inner iterations as the outer iteration proceeds,
even though the solve tolerance is decreased in every step. This somehow surprising outcome
is a result of the fact that the right hand side of the linear system is an increasingly better
approximation to the eigendirection of the system matrix. As we shall see this result does not
hold for the unpreconditioned (or preconditioned) linear system (2.2), but can be achieved by
an appropriate rank-one change to the standard preconditioner.

3.1. Unpreconditioned solution of the linear system (2.2). Inexact RQI involves
the iterative solution of the linear system (2.2). We assume that this is done using GMRES,
so that, for fixed i, the theory in Section 2 applies with

B = A − ρ(x(i))M and b = Mx(i),
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where we normalise x(i) as ‖Mx(i)‖ = 1, so that ‖b‖ = 1. In this case, with w1, W2, v1 and
V2 defined as in (2.8) there is no reason for the norm of Pb = PMx(i) = (I−w1v

H
1 )Mx(i) to

be small since Mx(i) will not be close to w1, the eigenvector of A − ρ(x(i))M corresponding

to the eigenvalue µ
(i)
1 nearest zero. Thus ‖PMx(i)‖ 6→ 0 as i → ∞. Proposition 2.5 states

that not more that k(i) inner iterations per outer iteration i are required to solve (2.2) to a
tolerance τ (i), where k(i) is bounded by

k(i) ≥ 1 +
1

log |Ψ(0)|

(

log S‖µ1I − C‖‖V2‖ + log
‖PMx(i)‖

|µ1|τ (i)

)

. (3.1)

If we choose a fixed shift and a decreasing tolerance τ (i) the lower bound on the inner iterations
will increase with i as i → ∞. If we choose a fixed tolerance and a variable shift ρ(x(i)), then

µ
(i)
1 , the eigenvalue of A − ρ(x(i))M will tend to zero as i → ∞, and so, again, the lower

bound on the number of inner iterations will increase with i. If τ (i) also decreases, say with
τ (i) = C‖r(i)‖ for some C, then the lower bound will further increase with i as ‖r(i)‖ → 0.
This behaviour can be observed in practice (see, for example [2, 3]).

We note that both a right preconditioned system, given by

(A − ρ(x(i))M)P−1ỹ(i) = Mx(i), P−1ỹ(i) = y(i),

and a left preconditioned system, given by

P−1(A − ρ(x(i))M)y(i) = P−1Mx(i),

where P is a preconditioner for A − ρ(x(i))M yield similar results, since Mx(i) is not an
eigenvector (or close to an eigenvector) of (A− ρ(x(i))M)P−1 and P−1Mx(i) is also not close
to an eigendirection of P−1(A− ρ(x(i))M). This behaviour occurs for both fixed and variable
shifts and is indeed observed in the example in Section 4.

In the next two subsections we shall show that when preconditioned solves are used this
situation can be significantly improved with a simple rank-one change to the preconditioner.
Note that, in this paper we only treat the case of solving (2.2) with a right preconditioner.
The tuned left preconditioner and the tuning operator for an unpreconditioned system are
straightforward consequences of this approach.

In the following subsections we shall assume that a good preconditioner for A is also a good
preconditioner for A− σM. This is the approach taken in [34] and it is likely to be the case if
A arises from a discretised partial differential equation where a tailor-made preconditioner for
A may be available. Further we restrict ourselves to right preconditioners, all results readily
extend to left preconditioners.

3.2. The ideal preconditioner. In this subsection we discuss a rather theoretical case.
Suppose x(i) = x1 (that is, convergence has occurred) and consider the question of applying
GMRES to a preconditioned version of the linear system

(A − ρ(x1)M)y = Mx1, (3.2)

which is the limiting case of (2.2) with ρ(x1) = λ1. Set x̂1 = x1/‖x1‖ and suppose the
preconditioner

P = P(I − x̂1x̂
H
1 ) + Ax̂1x̂

H
1 , (3.3)

is used, which satisfies Px1 = Ax1 = λ1Mx1, and the preconditioned form of (3.2) is

(A − ρ(x1)M)P−1y = Mx1. (3.4)

The action of P projects out the x̂1 component in P and replaces it by the x̂1 component in
A. Note that a similar idea was presented in [33] for standard Hermitian eigenproblems. Now,
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(A− ρ(x1)M)P−1Mx1 = 0, that is Mx1 (the right hand side of (3.4)) is an exact eigenvector
of (A−ρ(x1)M)P−1 with corresponding eigenvalue zero. In that case GMRES applied to (3.4)
would converge in just one step (cf. (2.16) in Section 2, where ‖Pb‖ = ‖(I−Mx1v

H
1 )Mx1‖ = 0

holds in this situation since vH
1 Mx1 = 1 and hence ‖b − Bz1‖ = 0 in exact arithmetic). We

call (3.3) the ideal preconditioner.
The next theorem shows that modifying P by a rank-one change to produce P does not

adversely affect the conditioning of the preconditioner. More precisely, Theorem 3.1shows that
the spectrum of AP−1 is close to the spectrum of AP−1. Hence, if P is a good preconditioner
for A, then so is P.

Theorem 3.1. Let P be given by (3.3) and assume that the block diagonalisation

U−1AX =

[

t11 0H

0 T22

]

, U−1MX =

[

s11 0H

0 S22

]

, (3.5)

where λ1 = t11/s11 is valid. Hence x1 = Xe1 and u1 = U−He1 are the right and left eigen-
vectors corresponding to λ1. Then the matrix AP−1 has the same eigenvalues as the matrix





1
1

s11
eT
1 U−1AP

−1UĪn−1

0 (ĪT
n−1U

−1AXĪn−1)(Ī
T
n−1U

−1PXĪn−1)
−1



 .

Proof. With U−1Mx1 = s11e1 and AP−1Mx1 = Mx1 we have that AP−1 has the same
eigenvalues as

[U−1Mx1 Īn−1]
−1U−1AP

−1U[U−1Mx1 Īn−1] =





1
1

s11
eT
1 U−1AP

−1UĪn−1

0 ĪT
n−1U

−1AP
−1UĪn−1



 .

Introducing U−1AX = diag(t11,T22) we can write

[U−1Mx1 Īn−1]
−1U−1AP

−1U[U−1Mx1 Īn−1] =





1
1

s11
eT
1 U−1AP

−1UĪn−1

0 T22Ī
T
n−1X

−1P−1UĪn−1



 .

Finally, observe that PXĪn−1 = PX2 = PX2 and hence

ĪT
n−1X

−1
P
−1UĪn−1 = ĪT

n−1(U
−1

PX)−1Īn−1.

We have U−1PX = U−1P[x1 X2] = U−1[λ1Mx1 PX2] = [λ1s11e1 U−1PX2]. Taking the
inverse using the block structure of U−1PX and using T22 = ĪT

n−1U
−1AXĪn−1 gives the

result.
Note that the block diagonalisation (3.5) is possible, since we assume that (A,M) has a simple
eigenvalue (see [11, Corollary 2.4])

Theorem 3.1 shows that one eigenvalue of AP−1 is equal to one and all the other eigenvalues
are equal to eigenvalues of (ĪT

n−1U
−1AXĪn−1)(Ī

T
n−1U

−1PXĪn−1)
−1. Therefore if P is a good

preconditioner for A, then ĪT
n−1U

−1PXĪn−1 will be a good approximation to ĪT
n−1U

−1AXĪn−1

and hence the eigenvalues of AP−1 should be clustered around one.
Now, since Mx1 is a simple eigenvector with corresponding eigenvalue zero of (A −

ρ(x1)M)P−1, the block-factorisation (cf. (2.5))

(A − ρ(x1)M)P−1 =
[

w̄1 W̄⊥
1

]

[

0 n̄H
12

0 N̄22

]

[

w̄1 W̄⊥
1

]

(3.6)

and block-diagonalisation (cf. (2.8))

(A − ρ(x1)M)P−1 =
[

w̄1 W̄2

]

[

0 0H

0 C̄

] [

v̄H
1

V̄H
2

]
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exist, where w̄1 = Mx1.
The perfect preconditioner introduced in this section is only of theoretical concern. In the

next section we introduce a practical preconditioner, but the ideal preconditioner is used to
prove our main result about the independence of k(i) on i (Theorem 3.5).

3.3. The tuned preconditioner. As a practical preconditioner we propose to use

Pi = P(I − x̂(i)x̂(i)H

) + Ax̂(i)x̂(i)H

, where x̂(i) = x(i)/‖x(i)‖, (3.7)

(cf. (3.3)) which satisfies

Pix
(i) = Ax(i). (3.8)

the same condition as used in [14] and [10]. Clearly, as x(i) → x1 the tuned preconditioner Pi

will tend to the ideal preconditioner P (and Mx1, the right hand side of the system, will be
an exact eigenvector for (A− ρ(x1)M)P−1) and we expect that, in the limit, the performance
of GMRES applied to (A − ρ(x(i))M)P−1

i ỹ(i) = Mx(i) will be superior to its performance
applied to (A − ρ(x(i))M)P−1ỹ(i) = Mx(i). We measure the deviation of x(i) from x1 using
the decomposition

x(i) = α(i)(x1q
(i) + X2p

(i)), (3.9)

where α(i) := ‖U−1Mx(i)‖, q(i) ∈ C, p(i) ∈ C(n−1)×1, X2 = XĪn−1 and Īn−1 =

[

0H

In−1

]

∈

Cn×(n−1) with In−1 being the identity matrix of size n− 1. Clearly q(i) and p(i) measure how
close the approximate eigenvector x(i) is to the sought eigenvector x1. From [11] we have

|ρ(x(i)) − λ1| ≤ C1‖p
(i)‖ (3.10)

and

1

C1
‖r(i)‖ ≤ ‖p(i)‖ ≤ C2‖r

(i)‖, (3.11)

for some constants C1 and C2.
Lemma 3.2. Let (3.9) hold. Then

x̂(i)x̂(i)H

− x̂1x̂
H
1 = E(i), (3.12)

where ‖E(i)‖ ≤ C3‖p
(i)‖ with C3 := ‖M‖‖X‖‖U−1‖. Furthermore we have

‖(A − ρ(x(i))M)Pi
−1 − (A − ρ(x1)M)P−1‖ ≤ β1‖p

(i)‖, (3.13)

where β1 is independent of i for large enough i.
Proof. We use the sine of the largest canonical angle and have (see [16, p. 76])

sin ∠(x̂(i), x̂1) = ‖X⊥
1

H
x̂(i)‖ = ‖x̂(i)x̂(i)H

− x̂1x̂
H
1 ‖ = ‖E(i)‖,

where X1
⊥ ∈ Cn×(n−1) is a matrix with orthonormal columns which are orthogonal to x1 (see

[17, p. 69]). Hence

‖E(i)‖ = ‖X⊥
1

H
x̂(i)‖ =

∥

∥

∥

∥

X⊥
1

H
(

x(i) − α(i)q(i)x1

‖x(i)‖

)
∥

∥

∥

∥

,

and using (3.9) as well as ‖X1
⊥‖ = 1, ‖X2‖ ≤ ‖X‖, α(i) ≤ ‖U−1‖‖M‖‖x(i)‖ this yields

‖E(i)‖ =

∥

∥

∥

∥

X1
⊥

(

α(i)X2p
(i)

‖x(i)‖

)∥

∥

∥

∥

≤ ‖M‖‖X‖‖U−1‖‖p(i)‖ =: C3‖p
(i)‖. (3.14)
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Furthermore, we have Pi = P + (A − P)E(i) and therefore, with ρ(x1) = λ1, we have

(A − ρ(x1)M)P−1 − (A − ρ(x(i))M)Pi
−1 = (A − ρ(x(i))M)(P−1 − P

−1
i )

+(ρ(x(i)) − λ1)MP
−1

= (A − ρ(x(i))M)P−1(Pi − P)Pi
−1

+(ρ(x(i)) − λ1)MP
−1

= (A − ρ(x(i))M)P−1(A − P)E(i)(P + (A − P)E(i))−1

+(ρ(x(i)) − λ1)MP
−1

Using (3.14) we have that

‖E(i)(P + (A − P)E(i))−1‖ ≤
‖P−1‖

1 − ‖P−1(A − P)‖‖E(i)‖
‖E(i)‖

≤
‖P−1‖

1 − ‖P−1(A − P)‖C3‖p(i)‖
C3‖p

(i)‖

can be bounded by a constant independent of i since ‖p(i)‖ is decreasing. With (3.10) and
(3.11) we obtain the result for some β1 > 0.
Now, assume that w̄1 is a simple eigenvector of (A − ρ(x1)M)P−1. Then for i large enough,
(A − ρ(x(i))M)P−1

i can be block diagonalised as

(A − ρ(x(i))M)P−1
i =

[

w̄
(i)
1 W̄

(i)
2

]

[

µ̄
(i)
1 0H

0 C̄(i)

]

[

v̄
(i)
1 V̄

(i)
2

]H

, (3.15)

and (3.13) with [40, Theorem 2.7, Chapter 5] gives

c0‖p
(i)‖ ≤ |µ̄

(i)
1 | ≤ c1‖p

(i)‖,

‖C̄− C̄(i)‖ ≤ c2‖p
(i)‖,

‖V̄2 − V̄
(i)
2 ‖ ≤ c3‖p

(i)‖,

where c0, c1, c2 and c3 are positive constants independent of i. We have the following theorem,
which shows that if the tuned preconditioner is used, then the projected right hand side Pb
(see (2.16)), used in the linear system residual behaves like the eigenvalue residual (which is
not the case if the standard preconditioner P were used).

Theorem 3.3 (Right tuned preconditioner for nonsymmetric eigenproblem). Let the
assumptions of Theorem 2.2 hold and consider the solution of

(A − ρ(x(i))M)Pi
−1ỹ(i) = Mx(i), where y(i) = Pi

−1ỹ(i). (3.16)

with Pi chosen as in (3.8). Let zero be a simple eigenvalue of (A − ρ(x(i))M)P−1 such that
(3.6) holds. Furthermore, let |ρ(x(i))| > K for all i and some positive constant K. Then

‖P(i)Mx(i)‖ ≤ C4‖P
(i)‖‖r(i)‖ (3.17)

for some positive constant C4 independent of i for large enough i, where P(i) = I − w̄
(i)
1 v̄

(i)H

1

and v̄
(i)
1 and w̄

(i)
1 are left and right eigenvectors of (A − ρ(x(i))M)P−1

i .

Proof. Using P(i)w̄
(i)
1 = 0 we obtain

P(i)Mx(i) = P(i)(Mx(i) − αw̄
(i)
1 ) ∀α ∈ C. (3.18)

Then, with r(i) given by (2.4) and condition (3.8) as well as ρ(x(i)) 6= 0 we get

(A − ρ(x(i))M)P−1
i

(

Mx(i) +
r(i)

ρ(x(i))

)

=
1

ρ(x(i))
r(i). (3.19)
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Hence, Mx(i) + r(i)/ρ(x(i)) is an approximate eigenvector of (A− ρ(x(i))M)P−1
i with approx-

imate eigenvalue zero. Using (2.4) again and normalising this approximate eigenvector yields

(A − ρ(x(i))M)P−1
i

Ax(i)

‖Ax(i)‖
=

1

‖Ax(i)‖
r(i).

For i large enough (and hence ‖p(i)‖ as well as ‖r(i)‖ small enough) we can apply Proposition
2.1 to (A − ρ(x(i))M)P−1

i with ŵ = Ax(i)/‖Ax(i)‖ to get

∥

∥

∥

∥

∥

Ax(i)

‖Ax(i)‖
−

w̄
(i)
1

√

1 + p̄H
i p̄i

∥

∥

∥

∥

∥

≤
2e(i)

sep(µ̄
(i)
1 , N̄

(i)
22 ) − 2e(i)

, (3.20)

where e(i) = ‖r(i)‖/‖Ax(i)‖ ≤ C5‖r
(i)‖ since ‖Ax(i)‖ is assumed to be bounded. Multiplying

(3.20) by ‖Ax(i)‖/|ρ(x(i))| we have

∥

∥

∥

∥

∥

Mx(i) +
r(i)

|ρ(x(i))|
−

‖Ax(i)‖

|ρ(x(i))|

w̄
(i)
1

√

1 + p̄H
i p̄i

∥

∥

∥

∥

∥

≤
2f (i)

sep(µ̄
(i)
1 , N̄

(i)
22 ) − 2e(i)

, (3.21)

where, with |ρ(x(i))| > K,

f (i) =
‖Ax(i)‖

|ρ(x(i))|
e(i) ≤

1

|ρ(x(i))|
‖r(i)‖ ≤

1

K
‖r(i)‖. (3.22)

Furthermore (3.21) yields

∥

∥

∥

∥

∥

Mx(i) −
‖Ax(i)‖

|ρ(x(i))|

w̄
(i)
1

√

1 + p̄H
i p̄i

∥

∥

∥

∥

∥

−
‖r(i)‖

|ρ(x(i))|
≤

2f (i)

sep(µ̄
(i)
1 , N̄

(i)
22 ) − 2e(i)

.

Setting α :=
‖Ax(i)‖

|ρ(x(i))|
√

1 + p̄i
H p̄i

in (3.18) we use this bound to obtain

‖P(i)Mx(i)‖ ≤ ‖P(i)(Mx(i) − αw̄
(i)
1 )‖ ≤ ‖P(i)‖

(

2f (i)

sep(µ̄
(i)
1 , N̄

(i)
22 ) − 2e(i)

+
‖r(i)‖

|ρ(x(i))|

)

. (3.23)

Finally, with (3.22) and |ρ(x(i))| > K we obtain

‖P(i)Mx(i)‖ ≤ ‖P(i)‖

(

1

K

2

sep(µ̄
(i)
1 , N̄

(i)
22 ) − 2C5‖r(i)‖

‖r(i)‖ +
‖r(i)‖

K

)

.

Using (3.11) as well as |µ̄
(i)
1 | ≤ c1‖p

(i)‖ and ‖N̄
(i)
22 − N̄22‖ ≤ c4‖p

(i)‖ for appropriately chosen
constants c1 and c4 and ‖p(i)‖ small enough (see [40, p. 234] and comments after (3.15)), the
term

2

sep(µ̄
(i)
1 , N̄

(i)
22 ) − 2C5‖r(i)‖

≤
2

sep(µ̄1, N̄22) − c1‖p(i)‖ − c4‖p(i)‖ − 2C1C5‖p(i)‖
,

can be bounded by a constant independent of i for large enough i. Hence the result (3.17) is
obtained for an appropriately chosen constant C4.
Before proving the main result of this section we need another lemma.

Lemma 3.4. Let B1 and B2 be two matrices of the same dimensions and let Pγ(B1)
and Pγ(B2) be the spectral projections onto the eigenvectors of B1 and B2 corresponding to
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the eigenvalues inside a closed contour γ. Assume that ‖B1 − B2‖ ≤ ξ and let mγ(B1) =
maxλ∈γ ‖(λI − B1)

−1‖. If ξmγ(B1) < 1 then

‖Pγ(B1) − Pγ(B2)‖ ≤
1

2π
L(γ)

ξm2
γ(B1)

1 − ξmγ(B1)
,

where L(γ) is the length of γ.
Proof. See [24] and [15, Section 8.2].

We can finally prove the following Theorem which provides the main result of this section.
Theorem 3.5. Let the assumptions of Theorem 3.3 be satisfied. Compute ỹk(i) satisfying

the stopping criterion

‖(A − ρ(x(i))M)Pi
−1ỹk(i) − Mx(i)‖ ≤ τ (i) = δ‖r(i)‖ζ δ < 1,

where ρ(x(i)) is the generalised Rayleigh quotient (2.3), Pi
−1 is the tuned preconditioner and

(a) ζ = 0 is used for solves with a fixed tolerance and
(b) ζ = 1 is used for solves with a decreasing tolerance.
Then, for large enough i, k(i), the bound on the number of inner iterations used by GMRES to
compute ỹk(i) satisfying this stopping criterion, is
(1a) bounded independently of i for ζ = 0,

(1b) increasing with order log(‖r(i)‖
−1

) for ζ = 1,
where r(i) is the eigenvalue residual. In contrast the bound on the number of inner iterations
used by GMRES to compute ỹk(i) satisfying the stopping criterion

‖(A− ρ(x(i))M)P−1ỹk(i) − Mx(i)‖ ≤ τ (i) = δ‖r(i)‖ζ δ < 1,

where P is the standard preconditioner, is

(2a) increasing with order log(‖r(i)‖
−1

) for ζ = 0,

(2b) increasing with order 2 log(‖r(i)‖
−1

) for ζ = 1.
Proof. Let Ψ and E be given by Proposition 2.3 applied to C̄. For large enough i (and

hence small enough ‖p(i)‖ and ‖r(i)‖ which we use interchangeably, cf. (3.11)) decomposition
(3.15) exists. By Proposition 2.5 the residual obtained after k(i) iterations of GMRES starting
with 0 is less than τ (i) = δ‖r(i)‖ζ if

k(i) ≥ 1 +
1

log |Ψ(0)|

(

log Sδ‖µ̄
(i)
1 I − C̄(i)‖‖V̄

(i)
2 ‖ + log

‖P(i)Mx(i)‖

δ|µ̄
(i)
1 |‖r(i)‖ζ

)

. (3.24)

Using the bounds after (3.15) the argument of the first log term in the brackets can be bounded
by

‖µ̄
(i)
1 I − C̄(i)‖‖V̄

(i)
2 ‖ ≤ (‖C̄‖ + c1‖p

(i)‖ + c2‖p
(i)‖)(‖V̄2‖ + c3‖p

(i)‖), (3.25)

Since ‖p(i)‖ is decreasing (3.25) can be bounded independently of i for small enough ‖p(i)‖.
For the second log term in the brackets we use Theorem 3.3 and obtain

‖P(i)Mx(i)‖ ≤ C4‖P
(i)‖‖r(i)‖ (3.26)

The term ‖P(i)‖ can be bounded as follows

‖P(i)‖ ≤ ‖P(i) − P‖ + ‖P‖, (3.27)

where P = I− w̄1v̄
H
1 is the spectral projection of (A− λ1M)P−1 onto W̄2. For small enough

‖p(i)‖ we apply Lemma 3.4 with B1 = (A − λ1M)P−1 and B2 = (A − ρ(x(i))M)P−1
i and use

(3.13). Taking γ as a circle of centre zero and radius ‖p(i)‖, we obtain

‖P(i) − P‖ ≤
β1m

2
γ((A − λ1M)P−1)‖p(i)‖

1 − β1mγ((A − λ1M)P−1)‖p(i)‖
‖p(i)‖.
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Since ‖p(i)‖ is decreasing we have for a small enough ‖p(i)‖

β1m
2
γ((A − λ1M)P−1)‖p(i)‖

1 − β1mγ((A − λ1M)P−1)‖p(i)‖
,

can be bounded independent of i. Hence (3.26) and (3.27) imply ‖P(i)Mx(i)‖ ≤ C6‖P‖‖r(i)‖

for some constant C6. Together with the bounds on |µ̄
(i)
1 | and equivalence of ‖p(i)‖ and ‖r(i)‖

we obtain the results for ζ = 0 and ζ = 1 (parts (1a) and (1b)), respectively. For the standard
preconditioner we have that ‖P(i)Mx(i)‖ is bounded by a constant independent of ‖r(i)‖ and
hence from (3.24) we obtain parts (2a) and (2b), respectively.
Theorem 3.5 gives upper bounds on the iteration numbers only and for that reason the results
are qualitative rather than quantitative. For quantitative results we refer to Section 4.

The following theorem provides a method to implement the tuning concept efficiently.
Lemma 3.6 (Implementation of P

−1
i ). Let x(i) be the approximate eigenvector obtained

from the ith iteration of inexact inverse iteration. Then (3.7) satisfies (3.8) and, assuming

x(i)H
P−1Ax(i) 6= 0, we have

P
−1
i =

(

I −
(P−1Ax(i) − x(i))x(i)H

x(i)H
P−1Ax(i)

)

P−1.

Proof. Sherman-Morrison Formula.
Note that only one extra back solve P−1Ax(i) per outer iteration is necessary for the implemen-
tation of the tuned preconditioner, which can be computed before the actual inner iteration.
All further extra costs are inner products.

Remark 3.7 (Left tuned preconditioner). For left preconditioning, namely

P
−1
i (A − ρ(x(i))M)y(i) = P

−1
i Mx(i) (3.28)

the tuning works similarly. For ρ(x(i)) 6= 0 we have

P
−1
i (A − ρ(x(i))M)

(

P
−1
i Mx(i) +

P
−1
i r(i)

ρ(x(i))

)

=
P
−1
i r(i)

ρ(x(i))
,

so that P
−1
i Mx(i) +

P
−1
i r(i)

ρ(x(i))
is an approximate eigenvector of P

−1
i (A − ρ(x(i))M). Hence, as

‖r(i)‖ → 0, the right hand side of (3.28) tends to an eigenvector of the iteration matrix; a
similar situation to the right preconditioned case.

Remark 3.8. Note that as a consequence of (3.8) we have (AP
−1
i )Ax(i) = Ax(i), that is,

Ax(i) is an eigenvector of AP
−1
i corresponding to eigenvalue 1, which reproduces the behaviour

of the perfect preconditioner (see Theorem 3.1)
Remark 3.9 (Fixed shifts). The above theory also holds for fixed shifts. In that case

we have to decrease the solve tolerance and the number of inner iteration increases logarith-
mically if a standard preconditioner is applied and is bounded independently of i if the tuned
preconditioner is applied. The proof is similar to the one for Theorem 3.5.

4. Numerical examples. We investigate the linearised stability of fluid flows governed
by the steady-state Navier-Stokes equations. Here we merely summarise the main points and
refer to [19] for further details.

Suppose that a velocity field w has been computed for some particular parameter value.
To assess its stability the PDE eigenproblem

−ǫ∆u + w · ∇u + u · ∇w + ∇p = λu
∇ · u = 0 ,

}

(4.1)
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for some eigenvalue λ ∈ C and nontrivial eigenfunction (u, p), satisfying suitable homogeneous
boundary conditions needs to be solved. The parameter ǫ is the viscosity, which is inversely
proportional to the Reynolds number Re. The eigenfunction (u, p) consists of the velocity u
and the pressure p both defined on a 2D computational domain. Discretisation of (4.1) with
mixed finite elements yields the finite dimensional generalised eigenvalue problem (2.1) where
x = (UT

1 ,UT
2 ,PT )T is a vector of n degrees of freedom approximating (u1, u2, p)T , and the

matrices A and M take the form:

A =





F11 F12 BT
1

F21 F22 BT
2

B1 B2 0



 , M =





Mu 0 0
0 Mu 0
0 0 0



 , (4.2)

where A is nonsymmetric, M is positive semi-definite, both are large and sparse, see [21, 19].
We seek the rightmost eigenvalue which, for the case considered here with Re = 25.0, is

complex and near the imaginary axis. As iterative solver we use right preconditioned FGMRES
[31] where the preconditioner is given by the block preconditioner suggested by Elman [7, 8].

We use systems with 6734, 27294 or 61678 degrees of freedom and Reynolds number
Re = 25.0. For the inner solve we test three different approaches:

• solves with variable shift and decreasing tolerance,
• solves with fixed shift and decreasing tolerance,
• solves with variable shift and fixed tolerance.

For all three methods we apply both the standard and the tuned version of the block precon-
ditioner.

Table 4.1
Number of inner iterations for problem with Re = 25.0 and 6734 DOF if Rayleigh quotient shift and

decreasing tolerance is applied.

Var. shift Standard Tuned
Decr. tol. preconditioner preconditioner
Outer it. Inner it. Eigenvalue residual Inner it. Eigenvalue residual

i k(i) ‖r(i)‖ k(i) ‖r(i)‖
1 236 0.2963e+00 206 0.3003e+00
2 268 0.2892e-02 167 0.3059e-02
3 388 0.8455e-04 285 0.1021e-03
4 487 0.3707e-07 342 0.5524e-07
5 569 0.3253e-11 337 0.3639e-11

Total it. 1948 1351
Solve time 188.35 118.29

Table 4.1 shows the iteration numbers if a Rayleigh quotient shift and a decreasing tolerance
is applied. This leads to quadratic convergence of the overall algorithm, which can be seen
from the 3rd and 5th column of the table. For the standard preconditioner as well as for
the tuned preconditioner the number of inner iterations k(i) increases per outer iteration i,
however, for the tuned preconditioner the increase is less rapid, namely (from Theorem 3.5) of

order 2 log(‖p(i)‖
−1

) for the standard preconditioner and of order log(‖p(i)‖
−1

) for the tuned
preconditioner, where ‖p(i)‖ is proportional to the norm of the eigenvalue residual ‖r(i)‖. Hence
the total number of iterations for inexact RQI with the tuned preconditioner is less than with
the standard preconditioner. Here the saving is over 30 per cent (1351 versus 1948 iterations
with a corresponding saving in computation time).

Table 4.2 shows the iteration numbers for fixed shift solves with a decreasing tolerance. The
overall linear convergence can clearly be seen from the columns 3 and 5. According to Remark
3.9, the number of inner iterations for the standard preconditioner increases logarithmically
whereas for the tuned preconditioner the number of inner iterations per outer iteration remains
approximately constant. This behaviour can indeed be observed from columns 2 and 4 in Table
4.2. The total savings in iteration numbers is over 50 per cent if the tuned preconditioner is
applied.
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Table 4.2
Number of inner iterations for problem with Re = 25.0 and 6734 DOF if fixed shift and decreasing tolerance

is applied.

Fixed shift Standard Tuned
Decr. tol. preconditioner preconditioner
Outer it. Inner it. Eigenvalue residual Inner it. Eigenvalue residual

i k(i) ‖r(i)‖ k(i) ‖r(i)‖
1 236 0.2963e+00 206 0.3003e+00
2 252 0.5041e-02 157 0.5145e-02
3 333 0.1254e-02 230 0.1225e-02
4 360 0.2343e-03 199 0.2260e-03
5 392 0.3065e-04 189 0.2929e-04
6 421 0.3131e-05 184 0.2934e-05
7 447 0.2696e-06 180 0.2349e-06
8 483 0.2040e-07 179 0.1490e-07
9 516 0.1341e-08 182 0.7313e-09
10 543 0.8150e-10 187 0.3434e-10

Total it. 3983 1903
Solve time 360.38 157.65

Table 4.3
Number of inner iterations for problem with Re = 25.0 and 6734 DOF if Rayleigh quotient shift and fixed

tolerance is applied.

Var. shift Standard Tuned
Fixed tol. preconditioner preconditioner
Outer it. Inner it. Eigenvalue residual Inner it. Eigenvalue residual

i k(i) ‖r(i)‖ k(i) ‖r(i)‖
1 209 0.2956e+00 183 0.2984e+00
2 252 0.3962e-02 170 0.3955e-02
3 292 0.7056e-03 138 0.8659e-03
4 377 0.7723e-05 185 0.3534e-04
5 424 0.3327e-06 215 0.6833e-06
6 463 0.1483e-07 187 0.2681e-07
7 514 0.3302e-09 198 0.7628e-09
8 548 0.1155e-10 200 0.1903e-10

Total it. 3079 1484
Solve time 291.77 105.84

The iteration numbers for Rayleigh quotient shift solves with fixed tolerance are shown
in Table 4.3. Overall linear convergence of the eigenvalue residuals can readily be observed.
For the standard preconditioner the number of inner iterations per outer iteration increases
logarithmically whereas for the tuned preconditioner the number of inner iterations remains
approximately constant. This behaviour is expected from Theorem 3.5. Applying the tuned
preconditioner saves more than 50 per cent in total number of iterations and time to solve the
problem.

Table 4.4 summarises the total number of iterations for different problem sizes when the
standard or the tuned preconditioner is applied within the inner solves. The outer iteration
is stopped once the eigenvalue residual is smaller than 10−10. All problems show a significant
improvement both in terms of iteration numbers and computation time when the tuned precon-
ditoner is used. For 61678 degrees of freedom (last two columns) inexact inverse iteration with
the standard preconditioner stagnates at an eigenvalue residual of order 10−9 whereas inexact
inverse iteration with a tuned preconditioner converges to a smaller eigenvalue residual and,
moreover, the convergence is achieved with many fewer iterations (that is fewer matrix-vector
products).

5. Equivalence between preconditioned JD and preconditioned inexact RQI.
In this section we compare inexact RQI with a special tuned preconditioning to the simplified
preconditioned JD method and show that they are in fact equivalent. This is a significant
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Table 4.4
Total number of inner iterations until eigenvalue residual ‖r(i)‖ is smaller than 10−10 for Re = 25.0

and different degrees of freedom if standard or tuned preconditioner are applied. (⋆) represents stagnation at
eigenvalue residual ‖r(i)‖ = 10−9

Degrees
of 6734 27294 61678

freedom
no tuning tuning no tuning tuning no tuning tuning

Var. shift total it. 1948 1351 2300 1561 >2742 1921
Decr. tol. solve time 188.35 118.29 365.91 251.47 ⋆ 542.73
Fixed shift total it. 3983 1903 4727 2119 >4777 2653
Decr. tol. solve time 360.38 157.65 808.17 303.48 ⋆ 640.41
Var. shift total it. 3079 1484 3039 1735 >2792 2412
Fixed tol. solve time 291.77 105.64 532.14 231.05 ⋆ 564.07

extension to the theory for the standard eigenproblem in [12] and helps to provide a convergence
theory for the preconditioned JD method. The proofs use ideas from [37, 23, 12]. In this section
we drop the index i since we only consider the inner iteration.

For the generalised eigenproblem, Sleijpen et al. [35] introduced a JD type method which
we describe briefly. Assume (ρ(x),x) is an approximation to (λ1,x1) and introduce the or-
thogonal projections

Π1 = I −
MxwH

wHMx
and Π2 = I −

xuH

uHx
, (5.1)

where uHx 6= 0 and wHMx 6= 0. With r = Ax − ρ(x)Mx solve the correction equation

Π1(A − ρ(x)M)Π2s = −r, where s ⊥ u, (5.2)

for s. This is the JD correction equation which maps span{u}⊥ onto span{w}⊥. An improved
guess for the eigenvector is given by a suitably normalised x + s. Sleijpen et al. [35, Theorem
3.2] have shown that if (5.2) is solved exactly then x(i) converges quadratically to the right
eigenvector x1.

Several choices for the projectors Π1 and Π2 are possible, depending on the choice of w
and u. We show that if a certain tuned preconditioner is used in inexact RQI applied to
the generalised eigenproblem then this method is equivalent to the simple JD method with
correction equation (5.2) and a standard preconditioner. From now on we assume without loss
of generality that x is normalised such that xHu = 1.

Let P be any preconditioner for A− ρ(x)M, then a system of the form

(A − ρ(x)M)P−1ỹ = Mx, with y = P−1ỹ (5.3)

has to be solved at each inner iteration for inexact RQI whilst a system of the form

(

I −
MxwH

wHMx

)

(A − ρ(x)M)
(

I − xuH
)

P̃†s̃ = −r, with s = P−1s̃ (5.4)

needs to be solved at each inner iteration of the simplified JD method, where the preconditioner
is restricted such that

P̃ =

(

I −
MxwH

wHMx

)

P
(

I − xuH
)

.

Following a similar analysis as in Section [35, Proposition 7.2] and introducing the projector
ΠP

2 given by

ΠP

2 = I −
P−1MxuH

uHP−1Mx
, (5.5)
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we have that a Krylov solve applied to (5.4) generates the subspace

span{r, Π1(A − ρ(x)M)ΠP

2 P−1r, (Π1(A − ρ(x)M)ΠP

2 P−1)2r, . . .},

whereas the solution ỹ to (5.3) lies in the Krylov subspace

span{Mx, (A− ρ(x)M)P−1Mx, ((A − ρ(x)M)P−1)Mx, . . .}.

These subspaces are not equal, but if a tuned version of the preconditioner is applied within the
inner solve arising for inverse iteration then we can show an equivalence between the inexact
simplified JD method and inexact RQI, as follows.

Ideally we would like to compare the JD method with a standard preconditioner to inexact
RQI with a tuned preconditioner which satisfies Px = Ax, however, equivalence can only be
shown for a slightly different choice of P. Numerical experiments will show that the difference
is minor. Instead of tuning using Px = Ax we use

Px = Mx, (5.6)

which, assuming the normalisation uHx = 1, is achieved by P = P + (M−P)xuH . Using the
Sherman-Morrison formula and assuming uHP−1Mx 6= 0 its inverse P−1 is given by

P
−1 = P−1 −

(P−1Mx − x)uHP−1

uHP−1Mx
. (5.7)

We can then generalise results in [12, Lemmata 1 and 3] as follows.
Lemma 5.1. Consider vectors w and u for which uHx 6= 0 and wHMx 6= 0. Let x be

a vector normalised such that xHu = 1 and let ρ(x) =
wHAx

wHMx
be the generalised Rayleigh

quotient. Let P be a preconditioner for A and let Π1 be defined as in (5.5). Further, let the
tuned preconditioner P satisfy (5.6) and let r = Ax− ρ(x)Mx = Π1r. Introduce the subspaces

Kk = span{Mx,AP
−1Mx, (AP

−1)2Mx, . . . , (AP
−1)kMx},

Lk = span{Mx, r, Π1AΠP

2P
−1r, . . . , (Π1AΠP

2P
−1)k−1r}

and

Mk = span{Mx, r, Π1AΠP

2 P−1r, . . . , (Π1AΠP

2 P−1)k−1r}

Then, for every k ≥ 1, we have Kk = Lk = Mk.
Proof. The proof is very similar to the proofs of Lemmata 1 and 3 in [12].
Finally, [12, Theorem 4] can be generalised to the following result:

Theorem 5.2. Let the assumptions of Lemma 5.1 hold with w = Mx. Let yRQ
k+1 and sJD

k

be the approximate solutions to

(A − ρ(x)M)P−1ỹ = Mx, with y = P
−1ỹ, (5.8)

and

(I −
MxxHMH

xHMHMx
)(A − ρ(x)M)(I − xuH)P̃†s̃ = −r, with s = P̃†s̃, (5.9)

respectively, obtained by k + 1 (k, respectively) steps of the same Galerkin-Krylov method with
starting vector zero. Then there exists a constant c ∈ C such that

yRQ
k+1 = c(x + sJD

k ). (5.10)
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Proof. The argument is similar to the one for [12, Theorem 4].
Note that there is no restriction on the choice of u used to normalise x. Indeed, we give

results for two different choices in the following example.
Example 5.3. Consider a generalised eigenproblem Ax = λMx, where the matrix A

is given by the matrix sherman5.mtx from the Matrix Market library [4]. The matrix M is
given by a tridiagonal matrix with entries 2/3 on the diagonal and entries 1/6 on the sub- and
superdiagonal. We seek the eigenvector belonging to the smallest eigenvalue, use a fixed shift
σ = 0 and an initial starting guess of all ones. We compare inexact RQI with simplified inexact
JD method and investigate the following approaches to preconditioning:
(a) no preconditioner is used for the inner iteration.
(b) a standard preconditioner is used for the inner iteration.
(c) a tuned preconditioner with Px = Mx is used for the inner iteration.
We use FOM as a solver with incomplete LU factorisation with drop tolerance 0.005 as pre-
conditioner where appropriate. Furthermore, we carry out exactly 10 steps of preconditioned
FOM for the inner solve in the simplified JD method, while precisely 11 steps of preconditioned
FOM are taken for each inner solve in inexact RQI. We do this in order to verify (5.10). We
also restrict the number of total outer solves to 20. Furthermore, we use two different choices
for u, namely

(i) a constant u given by a vector of all ones,
(ii) a variable u(i) given by u(i) = MHMx(i), which changes at each outer iteration.
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Fig. 5.1. Convergence history of the eigen-
value residuals for Example 5.3, case (a) and a
constant u
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Inexact inverse iteration without preconditioner

Fig. 5.2. Convergence history of the eigen-
value residuals for Example 5.3, case (a) and a
variable u(i) = MHMx(i)

Figures 5.1 to 5.6 show the results for Example 5.3. We can make two observations: first of
all, we see that only for case (c), when the tuned preconditioner is applied to inexact RQI and
a standard preconditioner is used with a simplified JD method, the convergence history of the
eigenvalue residuals is the same (see Figures 5.5 and 5.6), as we would expect from Theorem
5.2. If no preconditioner is used (see Figures 5.1 and 5.2) or a standard preconditioner is
applied (see Figures 5.3 and 5.4), then inexact RQI and the simplified JD are not equivalent.
Secondly, we can use any vector u within the JD method (see Figures on the left compared
to Figures on the right) and will get the same results. In particular, the choice of u(i) = x(i),
which is not presented here, leads to similar outcome.

This generalisation has two practical implications: Firstly, if inexact RQI is used with a
tuned preconditioner we obtain the same results as in the inexact simplified JD method with a
standard preconditioner. Hence, if we use inexact RQI with a tuned preconditioner the choice
of Π1 and Π2 does not have to be taken care of, whereas for the simplified JD method we have
to consider choices for Π1 and Π2 (and hence choices for w and u) and the implication on the
overall convergence rate of the algorithm ([35] indicate that only particular choices of w and
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Fig. 5.3. Convergence history of the eigen-
value residuals for Example 5.3, case (b) and a
constant u

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

outer iteration

ei
ge

nv
al

ue
 r

es
id

ua
l

 

 
simplified Jacobi−Davidson with standard preconditoner
Inexact inverse iteration with standard preconditioner

Fig. 5.4. Convergence history of the eigen-
value residuals for Example 5.3, case (b) and a
variable u(i) = MHMx(i)
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Fig. 5.5. Convergence history of the eigen-
value residuals for Example 5.3, case (c) and a
constant u

2 4 6 8 10 12 14 16 18 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

outer iteration

ei
ge

nv
al

ue
 r

es
id

ua
l

 

 
simplified Jacobi−Davidson with standard preconditoner
Inexact inverse iteration with tuned preconditioner

Fig. 5.6. Convergence history of the eigen-
value residuals for Example 5.3, case (c) and a
variable u(i) = MHMx(i)

u lead to quadratic convergence of the eigenvectors). For inexact RQI we simply use (3.7) or
(5.7) with any value for u and obtain quadratic convergence for an appropriately chosen solve
tolerance. Another implication is that tuning the preconditioner does not have any effect on
the JD method.

Finally, we show a numerical example where we use GMRES instead of FOM, which
supports the result that simplified JD with a standard preconditioner and inexact RQI with
a tuned preconditoner are in fact very closely related. This is not surprising since using [6,
Theorem 2], the residuals for FOM and GMRES are related to each other in the sense that
the FOM residual norm and the GMRES residual norm will be approximately equal to each
other if the GMRES residual norm is reduced at each step. Hence, similar results to the ones
in Example 5.3, where FOM was applied are expected for GMRES, although exact equivalence
of inexact RQI with a tuned preconditioner and inexact simplified JD method with a standard
preconditioner is only shown for a Galerkin-Krylov method such as FOM.

Example 5.4. Consider the generalised eigenproblem Ax = λMx arising from the
Galerkin-FEM discretisation on regular triangular elements with piecewise linear functions
of the convection-diffusion operator

−∆u + 5ux + 5uy = λu on (0, 1)2.

We use a 32 × 32 grid leading to 961 degrees of freedom. We seek the smallest eigenvalue,
which in this case is given by λ1 ≈ 32.15825765.
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We apply inexact RQI as well as simplified JD with Rayleigh quotient shift and a fixed solve
tolerance τ = 0.2 to this problem. For both methods we use the same starting guess and the
overall computation stops once ‖r(i)‖ < 10−12. We apply preconditioned GMRES (instead of
FOM) within the inner solve of each method. Both the simplified JD approach and the inexact
RQI are tested with a standard preconditioner and a tuned preconditioner, where here, tuning
is applied with Px = Ax (instead of Px = Mx as in Theorem 5.2).
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Fig. 5.7. Number of inner iterations against
outer iterations with standard and tuned precon-
ditioning (Example 5.4) when using inexact RQ
iteration
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inner iterations with standard and tuned precon-
ditioning (Example 5.4) when using inexact RQ
iteration
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Fig. 5.9. Number of inner iterations against
outer iterations with standard and tuned precon-
ditioning (Example 5.4) when using inexact sim-
plified JD method
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Fig. 5.10. Residual norms vs total number of
inner iterations with standard and tuned precon-
ditioning (Example 5.4) when using inexact sim-
plified JD method

The results for Example 5.4 are plotted in Figures 5.7 to 5.10. First of all, we can see
that for the simplified JD method tuning the preconditioner has no effect, the results for the
standard and the tuned preconditioner are very similar (see Figures 5.9 and 5.10), the total
number of iterations is the same.

For inexact RQI tuning the preconditioner reduces the number of iterations from 264 to
83 (see Figures 5.7 and 5.8) and the total number of iterations is even smaller than the one for
inexact simplified JD (83 versus 89) iterations. If we had used FOM and tuning with Px = Mx
(instead of GMRES and tuning with Px = Ax) those numbers would be equal.

In this example we used the projectors Π1 and Π2 from (5.1) with w = Mx and u =
MHMx for the simplified JD method. In general the choice of the projectors for JD for the
generalised eigenproblem has to be taken care of, whereas, if we just use the tuned precon-
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ditioner in conjunction with inexact RQI we do not have to worry about the choice of the
projectors.

6. Conclusions and further thoughts. We have developed and analysed a tuned pre-
conditioner for inexact Rayleigh quotient iteration applied to a generalised nonsymmetric eigen-
problem. We have applied this tuning strategy to a practical eigenvalue problem arising from
the mixed FE discretisation of the linearised steady Navier-Stokes equations and found it to
be very successful in reducing the total number of inner iterations. Furthermore we gave an
extension of the results in [12] to generalised eigenproblems. Several numerical examples sup-
port our theory and show that tuning yields an improvement over the standard preconditioning
strategy. These results also help to understand the Jacobi-Davidson method.

Both theory and results suggest that the full preconditioned Jacobi-Davidson method
with subspace acceleration is equivalent to subspace accelerated inverse iteration with a tuned
preconditioner.
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