Analytic discs in Complex Analysis

Florian Bertrand

Plan of the talk

- Set up
- Discs and the Poincaré metric
- Discs and an invariant Finsler metric in higher dimension.
- From metric properties to complex geometric properties

Angels and Devils, M.C.Escher

Set up

Let $\Omega \subset \mathbb{C}$ be a domain.

Definition

A function $f: \Omega \subset \mathbb{C} \to \mathbb{C}$ is holomorphic if it is complex differentiable at each point of Ω , i.e.

$$\lim_{h \to 0, h \neq 0} \frac{f(\zeta + h) - f(\zeta)}{h}$$

exists at each point $\zeta \in \Omega$.

Examples:

Set up

Let $\Omega \subset \mathbb{C}$ be a domain.

Definition

A function $f : \Omega \subset \mathbb{C} \to \mathbb{C}$ is holomorphic if it is complex differentiable at each point of Ω , i.e.

$$\lim_{h \to 0, h \neq 0} \frac{f(\zeta + h) - f(\zeta)}{h}$$

exists at each point $\zeta \in \Omega$.

Examples:

•
$$f(\zeta) = e^{i\theta}\zeta$$
 where $\theta \in \mathbb{R}$.
• $f(\zeta) = \overline{\zeta}$

Definition

A map $f = (f_1, f_2, ..., f_n) : \Omega \subset \mathbb{C} \to \mathbb{C}^n$ is holomorphic if f_j , j = 1, ..., n, is a holomorphic function.

Set up

Denote by $\Delta = \{\zeta \in \mathbb{C} \mid |\zeta| < 1\}$ the unit disc in \mathbb{C} .

We are interested in holomorphic maps $f : \Delta \to \mathbb{C}^n$; such a map is called a *holomorphic disc*.

Set up

Denote by $\Delta = \{\zeta \in \mathbb{C} \mid |\zeta| < 1\}$ the unit disc in \mathbb{C} .

We are interested in holomorphic maps $f : \Delta \to \mathbb{C}^n$; such a map is called a *holomorphic disc*.

Let $M \subset \mathbb{C}^n$ be a real hypersurface (e.g. boundary of a domain).

Definition

An analytic disc f attached to M is a continuous map $f: \overline{\Delta} \to \mathbb{C}^n$, holomorphic on Δ and such that $f(\partial \Delta) \subset M$.

Question: Understand the family, or subfamilies, of analytic discs attached to M; and accordingly deduce analytic or geometric properties of M

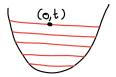
Two examples

• $\mathbb{B}_2 = \{z = (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 < 1\}, f_v(\zeta) = \zeta v$ where $v \in \mathbb{C}^n$ is a unit vector.

Two examples

• $\mathbb{B}_2 = \{z = (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 < 1\}, f_v(\zeta) = \zeta v$ where $v \in \mathbb{C}^n$ is a unit vector.

• $\Omega = \{z = (z_1, z_2) \in \mathbb{C}^2 \mid \Re e z_2 - |z_1|^2 > 0\}, f_t(\zeta) = (\sqrt{t}\zeta, t)$ where $t \ge 0$.



Set up

Let $M \subset \mathbb{C}^n$ be a real hypersurface (e.g. boundary of a domain).

Nonlinear boundary Riemann-Hilbert problem

A continuous map $f:\overline{\Delta}\to\mathbb{C}^n$ is an analytic disc attached to M iff

 $\begin{cases} f \text{ is holomorphic on } \Delta \\ f(\partial \Delta) \subset M \end{cases}$

History: Riemann 1851, Plemelj 1908, Hilbert 1912, Bishop 1965, Lempert 1981, Forstnerič 1987, Globevnik 1993...

The unit disc Δ The Poincaré metric Why Δ ?

The Schwarz Lemma

Theorem (Schwarz Lemma)

Let $f: \Delta \to \Delta$ be a holomorphic function s.t. f(0) = 0. Then

 $|f'(0)| \le 1,$

with equality iff f is a rotation.

The unit disc Δ The Poincaré metric Why Δ ?

The Schwarz Lemma

Theorem (Schwarz Lemma)

Let $f: \Delta \to \Delta$ be a holomorphic function s.t. f(0) = 0. Then

 $|f'(0)| \le 1,$

with equality iff f is a rotation.

Application: $Aut(\Delta) = \{R_{\theta} \circ B_a \mid \theta \in [0, 2\pi), a \in \Delta\},$ where

$$R_{\theta}(\zeta) = e^{i\theta}\zeta$$
 and $B_a(\zeta) = \frac{\zeta - a}{1 - \bar{a}\zeta}$

The unit disc \triangle The Poincaré metric Why \triangle ?

The Schwarz-Pick Lemma and the Poincaré metric on Δ

Theorem (Schwarz-Pick Lemma)

Let $f: \Delta \to \Delta$ be a holomorphic function. Then

$$\frac{|f'(\zeta)|}{1-|f(\zeta)|^2} \le \frac{1}{1-|\zeta|^2}$$

with equality iff $f \in Aut(\Delta)$.

The unit disc \triangle The Poincaré metric Why \triangle ?

The Schwarz-Pick Lemma and the Poincaré metric on Δ

Theorem (Schwarz-Pick Lemma)

Let $f: \Delta \to \Delta$ be a holomorphic function. Then

$$\frac{|f'(\zeta)|}{1-|f(\zeta)|^2} \le \frac{1}{1-|\zeta|^2}$$

with equality iff $f \in Aut(\Delta)$.

Definition (Poincaré metric)

For $\zeta \in \Delta$ and $v \in \mathbb{C}$

$$K_{\Delta}(\zeta, v) = \frac{|v|}{1 - |\zeta|^2} = \frac{|v|}{d(\zeta, \partial \Delta)}$$

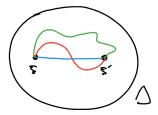
The unit disc \triangle The Poincaré metric Why \triangle ?

The Poincaré distance on Δ

Define the *Poincaré distance* $d_{\Delta}(\zeta, \zeta')$:

$$d_{\Delta}(\zeta,\zeta') = \inf \int_0^1 K_{\Delta}(\gamma(t),\gamma'(t))dt,$$

where $\gamma: [0,1] \to \Delta$ are such that $\gamma(0) = \zeta$ and $\gamma(1) = \zeta'$.



The unit disc \triangle The Poincaré metric Why \triangle ?

The Poincaré distance on Δ

Interpretation of Schwarz-Pick Lemma:

• Holomorphic functions $f: \Delta \to \Delta$ are decreasing the distance:

 $d_{\Delta}(f(\zeta), f(\zeta')) \le d_{\Delta}(\zeta, \zeta').$

• Automorphisms $f \in Aut(\Delta)$ are isometries.

The unit disc Δ **The Poincaré metric** Why Δ ?

The Poincaré distance on Δ

Interpretation of Schwarz-Pick Lemma:

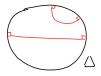
• Holomorphic functions $f: \Delta \to \Delta$ are decreasing the distance:

$$d_{\Delta}(f(\zeta), f(\zeta')) \le d_{\Delta}(\zeta, \zeta').$$

• Automorphisms $f \in Aut(\Delta)$ are isometries.

Some facts about the Poincaré disc:

- (Δ, d_{Δ}) is a complete metric space.
- Geodesic paths between two points are intersecting $\partial \Delta$ orthogonally.



Gauss curvature of the Poincaré disc is constant and negative.
Isometries of (Δ, d_Δ): Aut(Δ) or Aut(Δ).

The unit disc Δ The Poincaré metric Why Δ ?

Why is the unit disc special ?

Theorem (Riemann mapping Theorem)

- Let Ω ⊊ C be a simply connected domain. Then Ω is biholomorphic to Δ.
- **2** Compact Riemann surfaces with genus ≥ 2 admit Δ as universal cover.

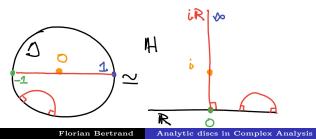
The unit disc Δ The Poincaré metric Why Δ ?

Why is the unit disc special ?

Theorem (Riemann mapping Theorem)

- Let Ω ⊊ C be a simply connected domain. Then Ω is biholomorphic to Δ.
- **2** Compact Riemann surfaces with genus ≥ 2 admit Δ as universal cover.

Example: The upper half plane $\mathbb{H} = \{\zeta \in \mathbb{C} \mid \Im m\zeta > 0\}$ is biholomorphic to Δ . Isometry from Δ to \mathbb{H} is $\zeta \mapsto i\frac{1+\zeta}{1-\zeta}$.

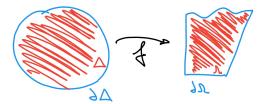


The unit disc Δ The Poincaré metric Why Δ ?

Analytic discs and the Riemann mapping Theorem

Let $\Omega \subsetneq \mathbb{C}$ be a simply connected domain.

Assume the boundary $\partial\Omega$ of Ω is continuous. "The" Riemann mapping between Δ and Ω extends continuously up to $\partial\Delta$; it is an analytic disc attached to $\partial\Omega$.



An observation due to Poincaré The equivalence Problem The Kobayashi pseudometric Hyperbolicity

An observation due to Poincaré

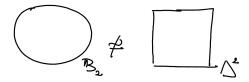
Theorem (Poincaré 1907)

For $n \geq 2$, the unit ball

$$\mathbb{B}_n = \{ z \in \mathbb{C}^n \mid |z|^2 = |z_1|^2 + |z_2|^2 + \dots + |z_n|^2 < 1 \}$$

is not biholomorphic to the unit polydisc

$$\Delta^n = \{ z \in \mathbb{C}^n \mid |z_j| < 1 \text{ for } j = 1, \cdots, n \}.$$



<u>Obstruction</u>: Geometry of the boundaries (presence of complex objects).

An observation due to Poincaré **The equivalence Problem** The Kobayashi pseudometric Hyperbolicity

Poincaré equivalence problem 1907

Questions:

• Determine when and how <u>domains</u> of \mathbb{C}^n can be mapped into one another by means of a holomorphic mapping.

Carathéodory 1926, Bergman 1950, Kobayashi 1967: theory of invariant metrics.

An observation due to Poincaré **The equivalence Problem** The Kobayashi pseudometric Hyperbolicity

Poincaré equivalence problem 1907

Questions:

• Determine when and how <u>domains</u> of \mathbb{C}^n can be mapped into one another by means of a holomorphic mapping.

Carathéodory 1926, Bergman 1950, Kobayashi 1967: theory of invariant metrics.

• Determine when and how <u>real submanifolds</u> of \mathbb{C}^n can be mapped into one another by means of a holomorphic mapping.

Poincaré 1907, Segre 1931, E. Cartan 1932, Chern-Moser 1975: CR geometry. Invariants by means of Taylor series coefficients.

An observation due to Poincaré The equivalence Problem **The Kobayashi pseudometric** Hyperbolicity

Kobayashi pseudometric

Let $\Omega \subset \mathbb{C}^n$ be a domain.

Definition (Kobayashi pseudometric)

Let $z \in \Omega$ and $v \in \mathbb{C}^n$:

$$K_{\Omega}(z,v) = \inf \left\{ \frac{1}{r} > 0 \mid f : \Delta \to \Omega \text{ holomorphic,} \right.$$
$$f(0) = z, f'(0) = rv \left\}.$$

An observation due to Poincaré The equivalence Problem **The Kobayashi pseudometric** Hyperbolicity

Kobayashi pseudometric

Let $\Omega \subset \mathbb{C}^n$ be a domain.

Definition (Kobayashi pseudometric)

Let $z \in \Omega$ and $v \in \mathbb{C}^n$:

$$K_{\Omega}(z,v) = \inf \left\{ \frac{1}{r} > 0 \mid f : \Delta \to \Omega \text{ holomorphic,} \\ f(0) = z, f'(0) = rv \right\}$$

Remarks:

- Biholomorphic invariant.
- Natural extension of the Poincaré metric in higher dimension.
- Measures the size of holomorphic discs contained in $\Omega.$
- Can be degenerate.

An observation due to Poincaré The equivalence Problem The Kobayashi pseudometric Hyperbolicity

Kobayashi hyperbolicity

Define the Kobayashi pseudodistance $d_{\Omega}(z, z')$ by considering lengths of smooth paths joining z and z'.

Definition

- Ω is hyperbolic if the Kobayashi pseudodistance d_{Ω} is a distance.
- Ω is complete hyperbolic if (Ω, d_{Ω}) is a complete metric space.

An observation due to Poincaré The equivalence Problem The Kobayashi pseudometric **Hyperbolicity**

Kobayashi hyperbolicity

Define the Kobayashi pseudodistance $d_{\Omega}(z, z')$ by considering lengths of smooth paths joining z and z'.

Definition

- Ω is hyperbolic if the Kobayashi pseudodistance d_{Ω} is a distance.
- Ω is complete hyperbolic if (Ω, d_{Ω}) is a complete metric space.

Examples:

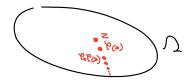
- Δ , \mathbb{H} , $\Delta \setminus \{0\}$, \mathbb{B}_n and Δ^n are complete hyperbolic.
- Any bounded domain in \mathbb{C}^n is hyperbolic.
- $\{z \in \mathbb{C}^2 \mid 1 < |z|^2 < 4\}$ is hyperbolic but not complete.
- $\{z \in \mathbb{C}^2 \mid \Re ez_2 + |z_1|^2 < 0\}$ is unbounded complete hyperbolic.
- \mathbb{C}^n is not hyperbolic. Any domain containing a complex line is not hyperbolic.

First example: Wong-Rosay theorem Second example: Lempert theory of extremal discs

An important rigidity result

Theorem (Wong 1977, Rosay 1979)

Let Ω be a smoothly bounded strictly pseudoconvex domain of \mathbb{C}^n . Assume that $Aut(\Omega)$ acts transitively on Ω (resp. is noncompact). Then Ω is biholomorphic to the unit ball \mathbb{B}_n .



<u>Remark:</u> Estimates of the Kobayashi metric near the boundary (Graham 1975)

First example: Wong-Rosay theorem Second example: Lempert theory of extremal discs

Extremal discs

Recall that for $z \in \Omega$ and $v \in \mathbb{C}^n$:

$$K_{\Omega}(z,v) = \inf \left\{ \frac{1}{r} > 0 \mid f : \Delta \to \Omega \text{ holomorphic}, \\ f(0) = z, f'(0) = rv \right\}$$

<u>Remark:</u> When Ω is bounded, there is a disc $f : \Delta \to \Omega$ with f(0) = zand $f'(0) = \frac{1}{K_{\Omega}(z,v)}v$. Such a disc is called an *extremal disc of* Ω for (z, v).

First example: Wong-Rosay theorem Second example: Lempert theory of extremal discs

Extremal discs

Recall that for $z \in \Omega$ and $v \in \mathbb{C}^n$:

$$K_{\Omega}(z,v) = \inf \left\{ \frac{1}{r} > 0 \mid f : \Delta \to \Omega \text{ holomorphic}, \\ f(0) = z, f'(0) = rv \right\}$$

<u>Remark</u>: When Ω is bounded, there is a disc $f : \Delta \to \Omega$ with f(0) = zand $f'(0) = \frac{1}{K_{\Omega}(z,v)}v$. Such a disc is called an *extremal disc of* Ω for (z, v). Examples:

- The set of extremal discs of Δ is $Aut(\Delta)$.
- Extremal discs of \mathbb{B}_n centered at the origin are linear discs $f(\zeta) = \zeta v$ (here ||v|| = 1). Extremal discs of \mathbb{B}_n are the holomorphic isometries $f : (\Delta, d_\Delta) \to (\mathbb{B}_n, d_{\mathbb{B}_n})$.
- $f_0(\zeta) = (\zeta, 0)$ and $f_1(\zeta) = (\zeta, \zeta^2)$ are extremal discs of Δ^2 for ((0,0), (1,0)).

First example: Wong-Rosay theorem Second example: Lempert theory of extremal discs

Lempert theory of extremal discs

Let Ω be a bounded smooth strongly convex domains in \mathbb{C}^n .

Theorem (Lempert 1981)

 Ω admits a singular foliation through any point by images of extremal discs.

First example: Wong-Rosay theorem Second example: Lempert theory of extremal discs

Lempert theory of extremal discs

Let Ω be a bounded smooth strongly convex domains in \mathbb{C}^n .

Theorem (Lempert 1981)

 Ω admits a singular foliation through any point by images of extremal discs.

Consequences and remarks:

- Extremal discs are holomorphic isometries, are smooth up to the boundary, and are isolated.
- Allows to construct a circular representation of $\Omega: \Phi_z: \Omega \to \mathbb{B}^n$.
- Extremal discs are stationary (Poletskii 1983: stationarity = Euler-Lagrange)

Birth of Stationary discs.

First example: Wong-Rosay theorem Second example: Lempert theory of extremal discs

a few words on stationary discs

- They are analytic discs
- Biholomorphically invariant
- Their existence is well understood for "nondegenerate" hypersurfaces and relies on nonlinear Riemann-Hilbert problems (Forstnerič 1987, Globevnik 1993-1994)
- They usually form a submanifold of <u>finite dimension</u> (of the infinitely dimensional Banach submanifold of analytic discs).
- Well adapted to study mapping problems (Lempert 1981, Huang 1994, Tumanov 2001), and to study the question "how to distinguish maps from one another?" (B-Blanc-Centi 2014, also with Della Sala, Lamel, Meylan).